

無人化與人機協作在 3K 場域的應用 與展望一以鋼鐵生產應用為例

中鋼公司總經理/陳守道

關鍵字:無人化、人機協作、3K 場域

摘要

本文以鋼鐵產業為例,探討無人化與人機 協作技術於高風險、高負荷的 3K 場域應用。 透過多項案例,展示無人機盤點、無人船測 深、水刀機器人、高空作業車、耐火材料自動 噴漿機與天車無人化改造等實施成果,有效提 升作業安全與效率。文中亦分析導入後組織職 能調整、法規標準配套與資訊安全挑戰。結論 指出,這些技術不僅解決勞動力短缺問題,更 對製造業數位轉型與永續發展具有關鍵意義。

一、前言

所謂「3K」是日語發音的骯髒(Kitanai)、 危險(Kiken)、辛苦(Kitsui)等特性的工作 場域。在這類場合中,傳統以人工作業常面 臨安全風險與效率瓶頸。例如高溫有害的場 域進行設備檢修、長時間重複的料堆盤點、 或在涌風不良的侷限空間工作等,都可能導 致人員發生潛在傷害或效率低下。引進無人 化與人機協作技術能將人員從這些惡劣環境 中解放出來,使工作更安全且更高效。研究 顯示,以機器人取代危險工序的人力,可大 幅減少職業傷害和疾病發生率。人機協作並 非完全取代人類,而是讓機器擅長的部分, 如重複、危險等工作,由機器執行,人在旁 監督或處理需要即時判斷的工作。藉由讓機 器承擔風險性的工作,人員得以從事加值目 安全的任務。這種人機分工不僅提高了安全 性,員工也不再需要暴露在惡劣環境下且避 免了過度的體力消耗進而改善了十氣與工作 滿意度。在 3K 場域推動無人化與人機協作, 加上工作流程檢視與工作人員職位的重新定

義,可以達到以機器之長補人力之短,達到 「減風險、增效率」的雙重效益。

二、應用案例

2.1 無人機進行料堆盤點測量

一貫化作業鋼廠的原物料堆盤點是需要定期進行的重要工作,傳統做法由測量人員攜帶測量儀器,在廣大的料場中逐點測繪料堆高程(圖1)。一座料堆可能高達十米以上且崎嶇陡峭,人工攀爬測量不僅費時費力,還存在料堆表面滑移的危險。此外,人員穿梭料場也影響大型取料機或卡車的調度,在測量期間須暫停作業。針對這些問題,導入無人機結合 3D 雷射掃描儀(測距精度約3 cm,最遠掃描距離 450 公尺)進行料堆體積測量。無人機飛行操作人員可在遠離料堆的安全區域遙控起飛(圖2),無人機沿預定路徑自動飛行並掃描整個料場,過程中不干涉地面生產作業。以相同的料場範圍測試,傳統人工測量可能需要累計 29 天的料堆範

圍相比,無人機僅約7天內即可完成全廠各原料堆的數據採集。在資料的處理方面,傳統量測的數據計算約需要兩週時間,透過無人機掃描所得的點雲資料經快速處理,一週內便可完成建模與料堆體積的計算(圖3)。此外,無人機掃描在經濟上的效益也顯現優勢:以每公頃盤點成本計算,無人機方案約為傳統人工的70%。

2.2 無人船執行碼頭水深測量

港區水域的泥沙沉積是普遍性的問題,需定期監測水深以決定是否疏浚航道。傳統海上測量作業,測量人員需乘坐小船於港區內來回測量,除了在水上布設測線,使用測深儀逐點測深外,還須配合船隻調度,方能進行水深測量。除了工期受限於船隻調度,人員乘船作業也有墜海等潛在風險。每次測量完成後還要經過長達4週的資料處理與報告編製。為提升效率並降低風險,中鋼碼頭水域引入無人測量船執行水深測繪(如圖4)。

圖 1 傳統人力量測料堆

圖 2 無人機量測試飛

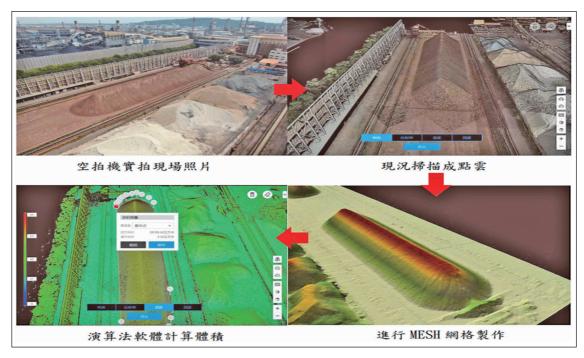


圖 3 無人機掃建模流程

圖 4 無人船進行碼頭水域深度量測流程

無人船配備了多波束測深儀、GPS-RTK 定位系統和避障雷達。操作時由兩名工作人 員部署無人船,透過遙控或預先程式設定航 線,無人船便可自動在測區水域往復航行完 成測深任務。由於有避障雷達,無人船能在 偵測到前方障礙(如其他船隻、浮標)時自 動閃避,減少碰撞風險。憑藉 RTK 即時定 位,無人船可即時回傳高精度的水深資料至 岸上筆電,實現即測即得。一趟完整測區掃 描僅需約30分鐘到1小時即可完成,效率遠 高於人工作業,而且在不影響碼頭船舶進出 下完成了水深監測。透過此案例驗證了無人 載具在港口水域勘測的可行性與優越性。

2.3 碼頭水刀切割機器人

在碼頭維修中,高壓水刀常被用來切割 或鑿除碼頭岸壁的混凝土層,以進行結構 修補。人工持握高壓水槍在岸邊進行打除作 業相當危險,水刀噴射壓力極高且產生強 烈反作用力,需要妥善的動線規劃。此外, 水刀切割時會濺射碎片和強噪音,碼頭環 境濕滑也增加了風險。倘若位於水面下方的 區域需要打除,則需要潛水人員進入海中 協助進行。

有鑑於此,導入水刀切割機器人執行碼 頭岸壁的混凝土打除作業,期能簡化工作流 程並降低工安風險。該機器人包含一組龍門 架或懸臂,在其結構上佈設軌道,軌道上安 裝可移動的具高壓水噴頭的機構。實施時, 先將機器人固定在岸壁附近,將龍門架或懸 臂覆蓋作業區域,連結水刀機與高壓水噴頭 的管線,然後由遙控或預設程式控制水刀噴 頭,均匀地自動切割/打除混凝土。施工步 驟通常包括:高壓水泵與發電機定位 → 水 刀機定位→ 架設導軌 → 啟動自動打除(如 圖 5)。

圖 5 碼頭水刀機器人安裝流程

水刀機器人的導入使危險的岸邊混凝土 鑿除作業實現了無人化。對比人工手持高壓 水槍,新工法消除了操作人員直接接觸高壓 噴射的風險,也避免了人在岸邊施工區域可 能被噴濺砸傷或是不慎墜海的隱憂。由機器 執行,水刀的移動速度與路徑均可最佳化設 定,因而作業時間縮短,效率更高。作業後 評估,新式工法在降低工安危害的同時,單 位時間內能處理的面積更大。同時,機器人 運行穩定,可24小時不間斷作業,加快工程 進度。對港勤調度的影響方面,因水刀機器 人佔用空間小目施工時間短,對碼頭正常裝 卸營運幾乎沒有影響。而人員在碼頭進行施 工常需要封鎖較大區域且持續時間較長。降 低對船運調度的影響、作業時間短、隔離人 員與工作中的危害正是水刀機器人新工法的 三大優勢。

2.4 攀附式智能噴漆檢測車

鋼鐵廠內大量設備如大型槽體、煙囪等需要定期進行除鏽和塗裝維護。傳統上需搭架或使用高空作業車,讓工作人員在高處進行除鏽、噴漆,以及塗層厚度測試等作業。這不僅耗費時間、人力,反覆地搭架拆架也影響生產,而且高空作業本身存在墜落風險。

攀附式智能作業車為上述的作業風險提供了可行的解決方案。藉由磁力吸附在槽體鋼鐵表面自行移動(圖6),代替人工攀爬並完成高空除鏽、噴漆與膜厚檢測等任務。車體搭載了除鏽噴頭(如高壓噴砂或水刀模組),並可需要更換為自動噴漆裝置以及膜厚測量傳感器(圖7)。它可以一邊移動一邊執行除鏽和噴塗,最後再測量塗層厚度以確保品質。

圖 6 攀附式智能車除鏽工作

圖 7 膜厚檢測探頭

經由妥善的作業規畫,一台智能車可連續工作完成覆蓋大型設備的大部分表面(圖8)。這大幅減少了高空作業,也避免工人暴露在油漆揮發物和粉塵中,更消除了搭架可能引發的風險。

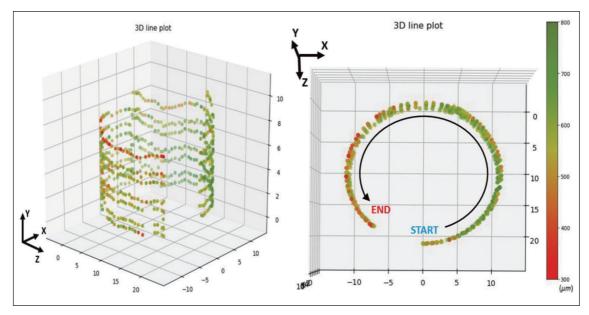


圖 8 儲槽不同位置的油漆膜厚連續檢測

2.5 自動耐火材料噴漿機

鋼鐵生產中,鋼液分配器內襯的耐火材料需要經常維護,以維持其耐高溫保護性能。傳統方式是人工將攪拌好的耐火泥用手推車運至分配器,傾倒在容器邊緣,再由工人進入分配器內用鏟具將耐火泥塗覆在內壁上。由於耐火材料散熱慢,通常進行這種作業時,分配器仍有餘溫,而且現場環境空間狹窄且煙塵瀰漫,屬於典型的骯髒危險工序。

為優化鋼液分配器維修程序,開發鋼液 分配器耐火材料自動噴漿機(圖9)。此系統 包含一具多軸機械手臂,連接噴塗槍,以及 自動供料裝置。操作時,耐火材的粉料從儲 槽通過管道輸送,並依照按程序與水混合為 適當的比例,之後由噴槍射出。機械手臂具 有 6 + 2 軸的高自由度,包含 3 個直線運動 方向 x,y,z 及 3 個轉動方向 θx,θy,θz; 另為滿足取物及工作要求,在尾端指部再增 加 2 個自由度,即擺動與旋轉,故能伸入分 配器內部各處,按照預定軌跡均匀噴塗耐火 泥。手臂上裝有雷射尋邊裝置,可偵測容器 邊界以調整噴塗範圍,確保不漏噴也不溢 出。整個噴塗過程由監控系統記錄,可追溯 每次施工的參數與覆蓋情況。

自動噴漿機使原本複雜且危險的耐火材料補噴作業變得高效且安全。首先,人員無需進入有殘餘高溫與粉塵的空間,僅需在外部控制面板操作,極大改善了作業人員的職業健康條件。此外,機械手臂噴塗速度快且均匀,一台設備即可在短時間內完成傳統多人多時的工作,間接提高煉鋼連續生產效率。而且由於機器噴塗品質穩定,內襯壽命

圖 9 耐火材料自動噴漿機

和鋼液品質得以提高,均匀的內襯耐火層避 免了薄弱點過早損耗,也減少了鋼液雜質污 染。本成功的案例體現了人機協作在 3K 環 境中的價值,透過機械手臂與自動控制,可 以將危險繁重的耐火材料施工轉變為安全、 高品質的自動化流程。

2.6 天車無人化改造(鋼捲吊運自動化)

傳統天車需要駕駛在高懸於數十米高 的駕駛艙內操作,不僅工作環境高溫、震 動且存在墜落風險,而人工操作穩定性受 限,可能導致吊運偏差或碰撞產品。為提升 工作安全,透過一系列先進技術優先在鋼 捲儲區實現天車無人化的改造(圖10)。改 造內容包括:在天車上加裝定位系統、雷射 測距、防搖擺裝置以及電腦視覺攝影機, 使天車能自行判別鋼捲位置並平穩夾取。夾 具部分也進行智能化升級,安裝多組雷射感

圖 10 無人化天車

測器以辨識鋼捲中心與內徑,並在夾具機 構裝設編碼器監測夾爪開合幅度,確保每 次都能精確抓取鋼捲而不掉落。另外,夾具 底部亦有感測器可探測下方障礙物距離,

避免夾具放下時撞及其他物件。天車周邊還部署了車輛與人員偵測攝影機,搭配 AI 影像辨識來防止天車運行時與地面的人或車發生衝突。透過這些改造,已能實現鋼捲的自動定位、夾取與吊運。

無人化天車的投入帶來多方面效益。首 先是安全性顯著提升,天車操作人員不再需 要親臨高空工作環境,地面也因為有自動防 撞和影像監控而降低人為操作的潛在事故風 險。其次為運作效率提高,經統計優化控 制後,無人天車吊運每顆鋼捲平均耗時相較 改造前人工操作的時間,縮短了約5%的時間。此外,天車可連續24小時運行且精確度 更高,減少了人工疲勞造成的暫時作業停歇 和鋼捲損傷機率。在能源與維護方面,無人 天車可實現無人化關燈作業(無人時自動關閉 照明)、降低設備碰撞損害,據報導其故障率 也明顯下降。整體而言,天車無人化改造成功 達成預期目標:人力成本降低、產能提升且安 全等級提高。

三、無人技術於工程應用的重要議 題與趨勢

無人化與人機協作技術在工程領域將持續蓬勃發展,同時也將面臨下列重要議題。

3.1 組織職能再定義與人因挑戰

1. 角色轉型與抗拒心理

實務研究指出,導入無人與協作機器人 後,若未同步調整職務設計與工作流程,容 易造成角色不明、資源競爭及人員抗拒心 理。例如歐洲鋼鐵廠工人對於無人機監測引 發隱私、安全與職能轉變疑慮,呼籲以人為 本納入決策過程。

2. 安全協作機制與智能調控

有專家認為人機協作對提升製造靈活性 與效率具有潛力,但安全問題與現行法規是 導入此類協作的主要障礙。而且傳統安全標 準(如 ISO 10218、ISO/TS 15066)無法有 效涵蓋智能與自主系統所需的靈活性與互動 性。因而提出「Deliberative safety」[1] 概念, 主張人機協作應透過動態切換安全策略(如 區隔偵測、彈性觸發、主動邊界管理等),強 化安全與效率的權衡,並發展能因應情境動 態調整的審議性安全系統,使智慧人機協作 真正落實於工業現場。

3.2 政策與標準

無人化與人機協作的方式也會隨著配套的 法律法規和標準發展而逐步完善。一方面,監 管部門可能會更新勞動法規以適應新技術,如 認可遠端操作的合法性、規範協作機器人工作 區的人員資格等。同時對於無人機、無人車、 無人船等的戶外運行,也有完善的空域、路權 或是航行權等管理政策,確保公共安全。另一 方面,國際標準化組織(ISO)和各國標準單 位正陸續更新發布相關標準,例如 ISO 10218-1 & -2 是關於工業機器人與協作機器人的基本 安全要求;而 ISO/TS 15066 針對協作型機器 人進行補充,並為開發者與使用者提供具體的 應用與安全參數指引 [2]。這些標準為製造商 和用戶提供了設計和評估依據,保障了人機協 作的安全底線。未來,隨著 AI 深度參與決策, 還可能出現 AI 倫理與責任相關政策,例如當 自動化系統出錯導致事故,如何追責等,需要 法律層而預先界定。

3.3 資料治理與安全

無人化系統的發展往往涉及龐大的數據 收集與分析,包括感測器數據、視頻流、設 備狀態資訊等。如何進行資料治理以確保資 料的品質、一致性和隱私安全,將是重要課 題。一方面,高品質的數據是 AI 決策和自動 控制的基石,如果數據不準或不完整,可能 導致機器人判斷失誤或模型偏差。未來企業 需要建立嚴謹的數據管理流程,對資料進行 清洗、標註和版本管控。另一方面,資通安 全風險不容忽視。工業無人系統連網後,可 能成為駭客攻擊目標,例如不法人士侵入控 制系統則後果不堪設想[3]。事實上,工業控 制系統(ICS)的網路安全已成為各國關注焦 點。未來趨勢將要求無人設備和協作機器人 具備內建的安全機制,包括通訊加密、身份 驗證和異常流量監測等。此外還需要制定應 變計畫,防止因過度依賴自動化而在遭遇網 攻時束手無策。資料隱私方面,施工場合可 能設置攝影機和傳感器蒐集環境資料,但須 注意不侵犯人員隱私和遵守相關法規。總體 而言,建立健全的資料治理架構和多層次的 資安防護,是智慧工場順利運行的基礎保障。

四、結語

從工程 ESG 的觀點出發,無人化與人機 協作技術在現代工程領域中扮演著越來越關鍵 的角色,不僅提升效率與安全,更對企業的永 續發展產生深遠影響。在環境構面上,透過精

準操作與資源最佳化配置,可有效減少能源浪 費與原物料耗損。例如水刀機器人與自動噴漿 機具的應用,不僅控制了施工材料用量,也減 少了噴漆逸散與粉塵排放,對工作區域的空氣 品質帶來正面效益。社會層面則反映在勞工職 業安全與職場尊嚴的提升,技術導入能將人力 從 3K 場域中解放,降低傷害與慢性病風險, 並創造出新的高技能職位,促進職能轉型與工 作價值感提升。此外,結合智慧化監控與記錄 系統,不僅提升了營運透明度與風險控管能 力,也有助於符合法規規範,進而增強企業的 韌性與全球競爭力。以鋼鐵產業為例,無人化 技術的導入有效消弭高風險場域的潛在危害, 同時銜接少子化帶來的人力資源挑戰。展望未 來,隨著演算法、感測器與材料技術的進步, 無人及人機協作系統將更加智慧與可靠,而人 力的角色亦將從體力執行者,轉型為決策者、 監督者與協作者。人機協作專案要能成功推 行,涵蓋範圍包括工作需求分析、系統建置、 資料處理到資料科學應用的整體整合等,透過 跨領域的密切合作,將共同打造永續且具韌性 的未來。

參考文獻

- Atieh Hanna, Simon Larsson, Per-Lage Götvall, Kristofer Bengtsson, "Deliberative safety for industrial intelligent human-robot collaboration: Regulatory challenges and solutions for taking the next step towards industry 4.0 "Robotics and Computer-Integrated Manufacturing Volume 78, December 2022.
- ISO Robots and humans can work together with new ISO guidance https://www.iso.org/news/2016/03/Ref2057.html
- Mohamed Saban, Leandro Daniel Medus, Silvia Casans, Otman Aghzout and Alfredo Rosado, "Sensor Node Network for Remote Moisture Measurement in Timber Based on Bluetooth Low Energy and Web-Based Monitoring System" Sensors 2021, 21, 491. https://doi.org/10.3390/s21020491