

能源回收式電網模擬電源技術 於智能微電網之應用

致茂電子股份有限公司資深經理/王國政 致茂電子股份有限公司處長/黃志忠 致茂電子股份有限公司課長/李政聰 致茂電子股份有限公司課長/王藝錡

關鍵字:電網模擬、市電併網型三相轉換器、四象限交流換流器、太陽能逆變器、低電 壓穿越

摘要

本文介紹Chroma 61800可能源回收式 電網模擬電源(Energy Recycle Type Grid Simulator) 技術,電源系統由市電併網型三 相轉換器、四象限交流換流器所組成。應用 於太陽能逆變器電網模擬電源可在待測物為 全四象限電壓及電流的組合下使用,除了將 功率回收至電網,更可以完成模擬低電壓穿 越(LVRT)等測試需求,真實模擬電網四象 限的操作特性。電網模擬電源控制策略以多 迴路補償控制技術,使系統適應於多種不同 特性的待測物,達到與電網系統相同具有低 輸出阻抗及高頻寬的特性。本文主要說明應 用於電網模擬器的迴路控制策略、暫態響應 及輸出特性分析,並以實驗結果驗證在電網 模擬電源所提出的控制策略可使得太陽能逆 變器(PV inverter)的各項指標特性,包含 諧波失真、虛功補償及低電壓穿越等測試結 果與電網一致。

一、前言

如圖1所示一般的功率量測儀器設備, 多由功率儀器提供能量給待測物,當待測物 回灌功率至量測儀器時,必須在儀器與待側 物之間並聯電阻來消耗待側物回灌的能量。 電阻的消耗造成能源浪費,電阻體積龐大且 具有散熱的問題,造成系統使用的缺點,具 有雙向能量傳遞的功率量測儀器是必要的趨 勢。本文將介紹可能源回收式電網模擬電 源,包含市電併網型三相轉換器、四象限交 流換流器的設計,提供能源回收功能達到節 能減碳。

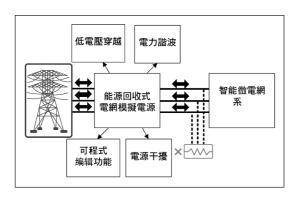


圖 1 能源回收式雷網模擬雷源架構圖

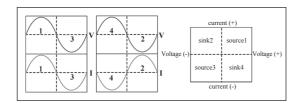


圖 2 四象限功率操作示意圖

在三相電壓源型變流器併聯於市電的應 用,其工作原理是利用空間向量脈波寬度調 變技術來改變電壓振幅及相位來達到功因校 正及無效功率補償[1]。

另外,此系統是藉由直流穩壓控制器之 命令來決定輸出電流大小,當系統有能量回 灌或是消耗時,可藉由穩定直流電壓大小來 達成功率雙向傳遞的目的。最後在穩壓控制 器的設計,必須具備良好的暫態響應,為了 因應待測物在測試時不同的能量轉態[2,3]。

隨著經濟快速發展,工業以及家庭用電 逐年成長,各項產品對於電力品質的耐受程 度要求也日漸增加,但在不可控的市電系統 下是無法順利進行各項指標性的電力品質測

試。本文提供如圖2所示之四象限交流換流 器作為應用對策,可實現市電可控的測試環 境,其中包含諧波失真測試、低電壓穿越能 力測試、可程式編輯輸出功能及模擬週期 瞬降、瞬間高壓、電壓漸降等電源干擾功 能[4]。

在各國積極於綠色能源的發展下,太陽 能雷池模組被大量的研發與生產,但當同收 式電網模擬電源接至太陽能逆變器時,相當 於並聯電容性負載,會造成系統的相對穩定 度下降,可能導致輸出電壓波形振盪等問題 出現,為了改善該問題,本文在四象限交流 換流器提出多迴路控制策略,調整適當的系 統頻寬,來因應各類阻抗性質的待測物。在 而對需求大功率的產品時,必須將能源回收 式電網模擬電源並聯使用,就會面臨電流均 流的問題,因此在系統並聯使用上必須做到 阻抗匹配的狀況下,才可以使得各系統在暫 熊及穩態的電流輸出能力一致,後續在II將 進行阻抗分析介紹。

二、電網模擬電源技術

(一) 市雷併網型三相轉換器

本文所選用的三相全橋式電壓源型變流 器,基本原理為經由控制功率開關元件切換 出高頻脈波電壓,藉由調變脈波寬度來控制 電感電流 $(i_i \cdot i_i \cdot i_i)$,以控制輸入至市電的 功率,如圖3所示。

三相全橋式電壓源型變流器輸出端和市 電電壓之間的電路方程式可以表示成:

$$\frac{d}{dt} \begin{bmatrix} i_r \\ i_s \\ i_t \end{bmatrix} = -\frac{\omega}{X_x} \begin{bmatrix} r_x & 0 & 0 \\ 0 & r_x & 0 \\ 0 & 0 & r_x \end{bmatrix} \begin{bmatrix} i_r \\ i_s \\ i_t \end{bmatrix} + \frac{\omega}{X_x} \begin{bmatrix} v_r - e_r \\ v_s - e_s \\ v_t - e_t \end{bmatrix}$$
(1)

其中 ω 為市電電壓頻率, X_x 即為電感阻抗。

市電併網型三相轉換器最主要的目的為穩定直流電壓v_{ac}使其與市電進行功率傳輸,可以利用一階低通控制器H達成直流電壓的穩定,並將其輸出做為電感電流命令;根據(1)電感電流可使用控制器G達成控制,並將電壓調變命令及直流電壓供給空間向量脈波寬度調變(SVPWM)計算開關週期[5],如圖4所示。

採用電壓回授信號 (e_r, e_s, e_t) 配合相電壓及靜止座標軸轉換技巧,由電壓回授信號計算相電壓峰值,並進行市電電壓角位置的估測,如圖5所示。

(二)四象限交流換流器

交流換流器是利用脈波寬度調變技術控制輸出電壓大小及相位,而結合數位控制之交流換流器同時具有控制交流/直流輸出,且數位控制使得系統的共用性提高及容易更改系統功能,如圖6所使用三組交流換流器所組成的三相系統,可以應用於模擬市電三相不平衡、電源變動及諧波合成等輸出模式。

如圖2,若智能微電網系統以傳統之單 向交流電源供應器連接,則需額外並聯負載 電阻消耗回灌能量,且僅能操作於兩個象限 (第一、三象限)。

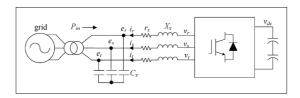


圖 3 市電併網型三相轉換器架構圖

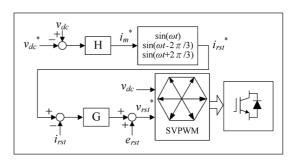


圖 4 直流穩壓控制器

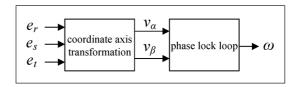


圖 5 市電鎖相迴路

如圖6之四象限交流換流器在輸出電壓的同時,若偵測到輸出得功率為「負(-)」功率時,四象限交流換流器啟動能源回收機制,將智能微電網系統所產生的逆灌電流/負功率能量轉換到交流電網。四象限交流換流器可應用到正負電壓/電流正反方向的全四象限,且具備能源回收功能,正足以成為電網模擬電源。

(三) 多迴路控制策略

迴路分析主要目的在於了解系統之迴路

狀態及相關設計參數之影響,如圖7為換流器 之硬體架構圖,藉由此架構之功率元件、濾 波元件配置,電壓、電流回授線路增益推導 出此系統之各別開迴路轉移函數。如圖8之方 塊圖,推導的系統迴路轉移函數如下:

$$F_{1} = \frac{v_{P}}{v_{s}}, F_{2} = \frac{v_{OL}}{v_{s}}$$

$$F_{3} = \frac{v_{OR}}{v_{s}}, F_{4} = \frac{i_{O}}{v_{s}}$$

$$F_{5} = \frac{i_{L}}{v_{s}}, F_{6} = \frac{i_{C}}{v_{s}}$$
(2)

$$T_{LV_C} = F_2 \times M_d \times G_{AD} \times G_{DSP} \times G_v \times K_{icon} \times K_{AD,V} \times G_{vc}$$
(3)

$$T_{IL} = F_5 \times M_d \times G_{AD} \times G_{DSP} \times G_{IL} \times K_{IL} \times K_{ICON} \times K_{AD \ IL}$$
 (4)

$$T_{IO} = F_4 \times M_d \times G_{AD} \times G_{DSP} \times G_{IO} \times K_{IO} \times K_{IO}$$

$$G_{RO} = \frac{\left(G_{VC} \times K_{icon} \times M_d \times G_{DSP} \times F_2\right)}{\left(1 + T_{IL} - T_{IO} + T_{LV_C}\right)}$$
(6)

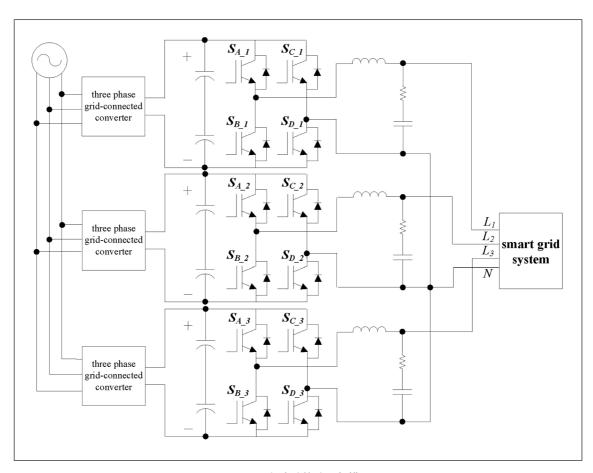


圖 6 三相交流換流器架構圖

 T_{LVC} 為電壓迴路增益、 T_{LL} 為電感電流迴 路增益、 T_{10} 為輸出電流迴路增益, G_{R0} 為系 統控制命令至輸出電壓的增益。利用電壓迴 路與電流迴路組成的多迴路設計分析,針對 輸出負載作最佳化改善補償。如圖9,為各主 要迴路特性的波德圖,藉由多迴路的設計, 其 G_{RO} 設計結果顯示,對輸出有穩定得輸出特 性,且在有效頻寬下,改善不同待測物之相 位邊限不足之缺點,以提升不同待測物負載 之耐受度。

(四)系統暫態響應分析

為了驗證本文所設計的控制策略在系統 功率轉態時具有良好的暫態響應,利用模擬 軟體進行系統功率從電源模式轉換成回灌模

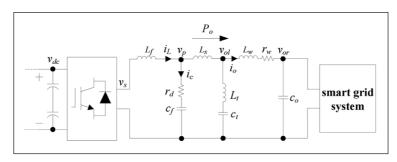


圖 7 四象限交流換流器

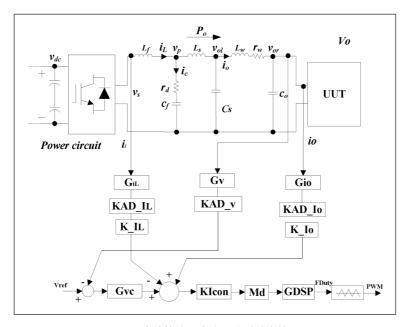


圖 8 交流換流器之多迴路系統方塊圖

式的暫態分析,在t = 0.2s時,從智能微電網 系統瞬間回灌系統滿載功率至系統輸出端, 可以從圖10可知系統在全功率轉換暫態時的 安定時間 $t_s = 20 \text{ ms}$,最大超越量 $M_o = 30\%$ 。 另外在市電併網型三相轉換器的電流暫態響 應如圖11所示,在t = 0.2 s,市電三相電流 $(i_i \cdot i_i \cdot i_i)$ 暫態之安定時間 $t_i = 30 \text{ ms}$ 。

三、電網模擬電源之實測結果

Chroma 61800能源回收式電網模擬電源 須能提供輸出良好的輸出波形並具有低電壓 諧波失真,以IEC 61000-4-7電源電壓規範為 例,制定電源電壓諧波各階應滿足的最大限 制百分比。以輸出線性電阻性負載,61800

穩態輸出結果在滿載輸出具有最高的電壓諧 波失真。如圖12所示將61800穩態滿載電壓 諧波失真與IEC 61000-4-7做比較,以電壓 380Vac/60Hz輸出規格為測定條件,61800各 階的輸出電壓諧波成分百分比,最高成分三 次諧波為0.2%,主要成分為奇數階諧波,愈 高階的電壓諧波百分比依次往下遞減,各階 成分均小於IEC 61000-4-7規範。

能源回收式電網模擬電源除具有輸出四 象限功率傳遞能力外,亦能提供市電端良好 功率因數,與低電流諧波失真。IEC 61000-3-12規範電流諧波最大失真度限制,制定各 階電源電流諧波應滿足的最大限制百分比。 如圖13,在電網模擬電源工作於四象限功

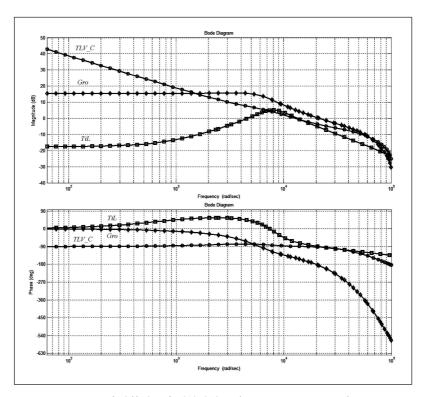


圖 9 交流換流器之系統波德圖(TLV_C、TIL、GRO)

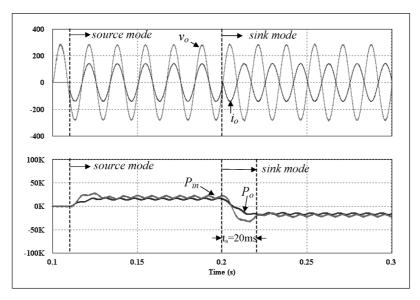


圖 10 四象限交流換流器及系統功率轉態圖

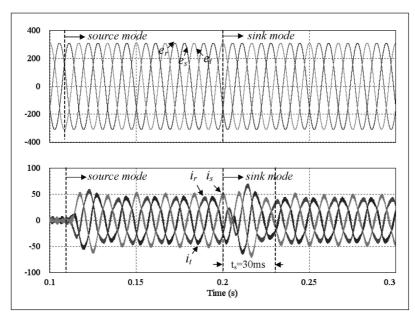
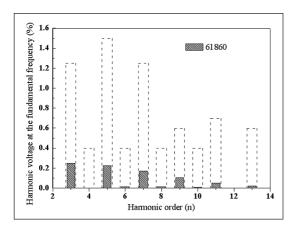



圖 11 市電併網型三相轉換器功率轉態

率時,能源回收至市電時的電流諧波失真, 滿足IEC 61000-3-12對各階電流諧波失真的 規範。

四、電網模擬電源之實際應用考量

現有典型的併網型太陽能逆變器測試設

各階電壓諧波百分比與 IEC 61000-4-7 比較圖

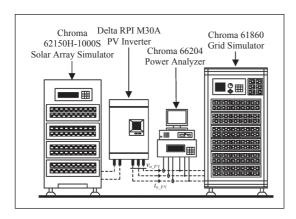


圖 14 併網型太陽能逆變器設備測試系統配線圖

備系統,如圖14 & 15,包含Chroma 62150H-1000S太陽能電池陣列模擬器 (Solar Array Simulator),模擬太陽能電池提供特定規格 的 直流輸入給併網型太陽能逆變器;交流 輸出端連接輸出至Chroma 61800能源回收 式電網模擬電源(Grid Simulator),再併入 市電; Chroma 66204數位式功率錶(Power Analyzer),進行相關功率數據量測。以電 網模擬電源的功能,針對規範需求提供太陽 能轉換器各種編程設定,包含電壓頻率操作 變動,低電壓穿越,虛功補償等。針對併網

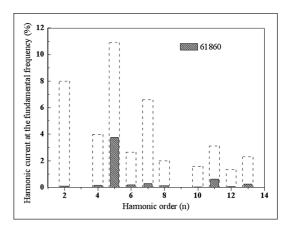


圖 13 各階電流諧波百分比與 IEC 61000-3-12 比較圖

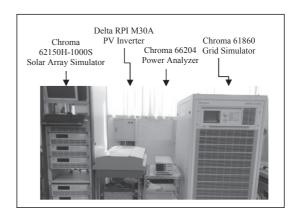
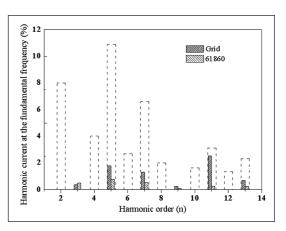


圖 15 併網型太陽能逆變器設備測試系統實體圖

型太陽能逆變器規範其操作規範,應實現相 關測試驗證符合法規規範,訂定標準操作特 性。避免過多及龐大的併網型系統,在故障 保護時,因暫態脫離突波能量,對電網造成 影響[6]。

(一)太陽能逆變器於市電與電網模擬電源 的電流諧波失真比較

以三相30 kW併網型太陽能逆變器為待測 物,比較其併接於市電電網與電網模擬電源


表 1 PF = 1.0

V: 380 V/60 Hz	Grid	61800
V_THD (%)	1.89	0.38
I_THD (%)	3.64	1.18
Po(kW)@太陽能逆變器	29.34	29.5
Io(A)@太陽能逆變器	46	45.51

的電流諧波。如表1,當設定太陽能逆變器併 接於市電網路,在額定輸出規格滿載輸出功 率條件下,市電電壓總諧波失真為1.89%,太 陽能逆變器對市電電源輸出的電流總諧波失 真3.64%。當設定太陽能逆變器併接於電網模 擬電源,在額定輸出規格滿載輸出功率條件 下,電網模擬電源電壓總諧波失真為0.38%, 太陽能逆變器對電網模擬電源輸出的電流總 諧波失真為1.18%。如圖16,由於電網模擬 電源電壓總諧波失真較市電電源的電壓總諧 波失真低,因此造成太陽能逆變器各階電 流諧波成分有較佳的表現,兩者皆符合IEC 61000-4-7規範。

(二)太陽能逆變器虛功補償下於市電與電 網模擬電源的電流諧波失真比較(相 位領先/落後)

因應智能電網內部負載特性,太陽能逆 變器具備虛功補償,以提升系統功率因數, 需具備PF<1的測試要求。如圖17及圖18,將 太陽能逆變器分別輸出PF = 0.9的領先及落 後電流,輸出為額定滿載輸出,在太陽能逆 變器輸出電流相位領先及落後時,均能維持 穩定輸出電壓。表2及表3,電網模擬電源電 壓總諧波失真,受太陽能逆變器滿載輸出額 定的影響較低,電網模擬電源電壓總諧波失 真,分別可維持在0.38%及0.21%的電壓總諧

輸出至市電電網與電網模擬電源的各階電流諧 波百分比比較圖

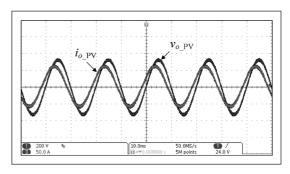


圖 17 PF = 0.9 (相位領先)輸出電壓電流波形圖

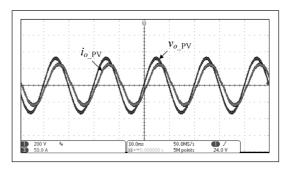


圖 18 PF = 0.9 (相位落後)輸出電壓電流波形圖

波失真,皆低於市電電網的3.48%及1.65% 的電壓總諧波失真。太陽能逆變器反應出電

表 2 PF = 0.9 (相位領先)

Vo: 380 V/60 Hz	Grid	61800
V_THD (%)	3.48	0.38
I_THD (%)	3.2	2.83
Po (kW) @ PV inverter	29.4	29
Io (A) @ PV inverter	45.6	44.09

表 3 PF = 0.9 (相位落後)

V:380V/60Hz	Grid	61800
V_THD (%)	1.65	0.21
I_THD (%)	3.738	1.002
Po (kW) @ PV inverter	29.7	29.6
Io (A) @ PV inverter	46.0	45.07

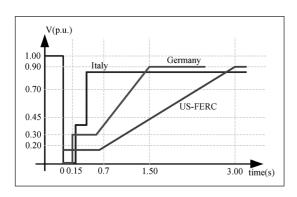
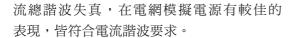



圖 19 各國低電壓穿越規範曲線比較

(三)太陽能逆變器於市電的 LVRT 測試

在再生能源的建置率增加後, 隨之系統 故障保護跳脫需符合規範,以避免再生能源 龐大的系統跳脫而干擾市電穩定品質。以併 網型太陽光電系統為例,於電網故障期間, 在規範的曲線以上,均能依據規範符合特定 電壓、時間、實虛功補償,並維持再生能源 併網低電壓穿越規範與變流器之最大電流限 制[7]。此市電模擬電源能提供電壓編輯,符

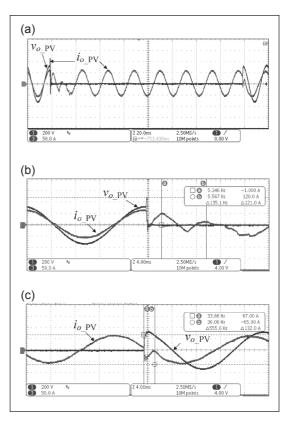


圖 20 太陽能逆變器低電壓穿越輸出電壓電流波形圖

合各規範的要求,在主動變動穿越轉態能以 >0.8 V/uS能力達到電壓快速轉態的需求。

如圖19,依據德國BDEW規範,由實測 波形可知,輸出電壓電流代表太陽能逆變器 輸出電流至電網模擬電源的輸出端,能量經 由電網模擬電源回收至市電端,如圖20(a) 以BDEW電源跌落0V,並且維持150 mS為 測試需求,測試條件電網模擬電源提供低電 壓諧波的額定輸出電壓於太陽能逆變器,在 回收能量至市電端,並提供低電流諧波於市 電。如圖20(b)電壓開始進入低電壓穿越,電 壓瞬間降至0V,太陽能逆變器提供電流符合

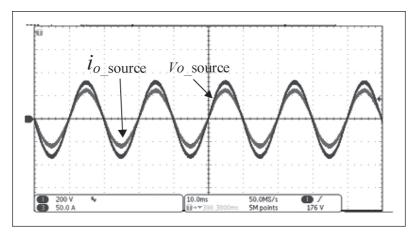


圖 21 PV Inverter 未啟動下模擬電源輸出電流(此 PF 接近為 1.0)

太陽能逆變器輸出規格。在低電壓穿越期間太陽能逆變器需維持150 mS額定輸出,電網模擬電源的輸出電壓仍維持0V輸出,不受太陽能逆變器輸出電流暫態影響。如圖20(c)低電壓穿越結束,電壓恢復至90%額定輸出電壓,此曲線滿足法規線需求,因此太陽能逆變器恢復原有的輸出特性。藉電網模擬電源高性能輸出特性,輸出符合規範的電源測試曲線,使得有效驗證低電壓穿越功能,確保太陽能逆變器所設計的輸出特性符合法規需求,在允許的電源變動內不受干擾。

(四)太陽能逆變器於電網孤島效應下之測 試

孤島效應為電網異常狀態下部分發電設 施與電網發生隔離的情況。若孤島狀態下發 生異常電壓或頻率將使得設備造成損壞,且 電網在無同步狀況下再次與孤島連接,則可 能使電網系統有極大之損壞風險。另外在孤 島狀態下,若人員並未確實檢測電網電壓而 進行操作則可能產生感電危險,因此太陽能 逆變器在併網狀態下將會進行偵測,一旦偵 測到孤島狀態則需在一定時間內切離系統保 障人員及系統之安全。

在孤島測試流程中,首先須將如圖23之 S1及S2開關閉合並將RLC Load投入於系統中並調適RLC Load,如圖21使其負載電流為PV Inverter之額定電流(此PF接近1.0為測試條件之一),當狀態完成後如圖22 PV Inverter啟動則由PV Inverter供給RLC Load電流,電網模擬電源當電流低於1% PV Inverter額定電流時則將S1切離(電網模擬電源切離系統),此時PV Inverter與RLC Load將進入孤島之狀態,而此狀態下依照法規IEC62116 PV Inverter將會在2sec內切離。

五、結論

在智能微電網的迅速發展,使得現代化 的電能網路大量減少對於單一能源的依賴

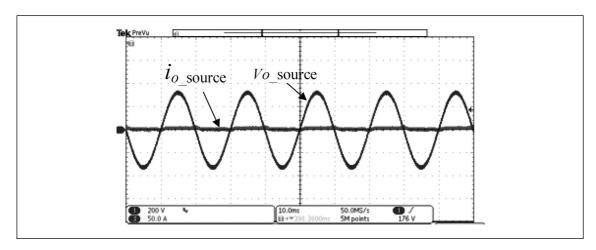


圖 22 PV Inverter 啟動下模擬電源輸出電流

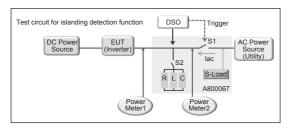


圖 23 併網型 Inverter 之孤島偵測功能測試電路

性。發展風力、太陽能發電、電池儲能等電 子技術,讓現有電網模擬需求由原有的能量 供給需求,擴展至雙向能源轉換需求。因此 具有雙向能源轉換的可程式電網模擬電源, 為雙向電能轉換設備的不可或缺的需求,能 在設備測試同時達到能源回收所帶來的節 能效益。

Chroma 61800能源回收式電網模擬電源 能提供四象限的電壓電流操作範圍,允許操 作於正負實功率轉換、虛功轉換,達到全域 的操作範圍,並能將逆向實功率轉換併入市 電,達到測試設備節能的特點,減少因測試 需求的能源損耗。高性能的輸出電源變動, 包含電壓頻率變動,並以可程式編輯功能達 到指定的低電壓穿越的快速變動需求,四象 限正負能量轉換達到虛功補償測試需求,以 及領先及落後的功率因素等動態測試需求, 而孤島測試中電網模擬電源則需要滿足RLC Load瞬間投入下之Inrush current及電容/電感 性負載對於電網模擬電源之穩定度要求。本 文以待測物太陽能逆變器作為驗證平台,以 各項標準測試執行電網模擬電源與市電電網 的驗證比較。電網模擬電源能提供市電電網 無法達成輸出電源頻率變動、電壓暫態等均 符合相關法規規範。在各項測試條件,包含 滿載回灌、領先及落後電流的條件下,電網 模擬電源具備低電壓諧波失真,能提供待測 物標準的測試環境,讓測定結果更為可靠。

參考文獻

1. B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, "A review of three-phase improved power quality ac-dc converters", IEEE Transactions on Industrial Electronics, vol. 51, no. 3, pp. 641-660, 2004.

專題報導

- 2. Y. Chen and X. M. Jin, "Modeling and control of three-phase voltage source PWM rectifier". Proc. of IEEE International Power Electronics and Motion Control Conference, vol. 3, pp. 1-4, 2006.
- 3. Y. Chen and K. Smedley, "Three-phase boost-type rid-connected inverter", IEEE Transactions on Power Electronics, vol. 23, no. 5, pp. 2301-2309, 2008.
- 4. Chroma, "回收式電網模擬電源 61845/61860 使用手 冊",102年。
- 5. Q. Zeng; L. Chang, "Improved current controller based on SVPWM for three-phase grid-connected voltage source inverters", Power Electronics Specialists Conference, pp. 2912-2917, 2005.
- 6. Blaabjerg, R. Teodorescu, M. Liserre, and A. V. Timbus, "Overview of control and grid synchronization for distributed power generation systems," IEEE Trans. Indust. Electron., vol. 53, no. 5, pp. 1398-1409, Oct. 2006.
- 7. C. T. Lee, C. W. Hsu, and P. T. Cheng, "A low-voltage ride-through technique for grid-connected converters of distributed energy resources," IEEE Trans. Indus. Appl., vol. 47, no. 4, pp. 1821-1832, Jul./Aug. 2011.