

談地熱資源調查與電力系統整合規劃 -以新一代清水電廠為例

財團法人中與工程顧問社/俞旗文 國立臺灣大學地質科學系暨研究所/宋聖榮 清水地熱電力股份有限公司/林伯修

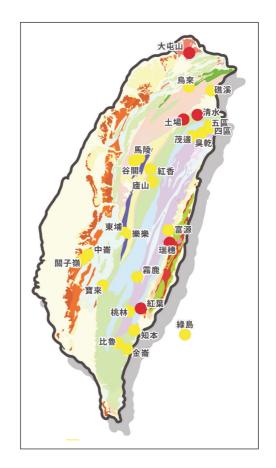
關鍵字:地熱資源量、發電潛能、新一代清水地熱

摘要

臺灣遍佈的溫泉與地熱,長期以來除溫 泉景點遊憩的開發外,其發電潛能也日漸受 到重視,政府2021起鎖定火山岩型(大屯火 山區為主)、變質岩型等傳統地熱區,盤點 全臺具傳統地熱發電潛力27處案場,大力資 助探勘研究經費或獎勵業者積極開發,以提 升地熱資源的潛能的有效利用。由於政府再 生能源政策,除傳統地熱的加速發展,未來 地熱開發也必須尋求全島地溫梯度偏高的地 熱潛能地區,進行深層地熱開發,以創造更 多的地熱發電的機會,填補全臺再生能源的 供應百分比。新一代清水地熱電廠(裝置容 量4.2 MW),在民國110年10月27日獲得經 濟部能源局核發的電業執照,成為全國目前 唯一兆瓦(MW)級商轉的地熱發電廠。新 一代清水地熱電廠的成功變身,為國內地熱 發電的停滯發展困境中,打了一劑強心針。 本文特別整理新一代清水電廠於資源調查精 進、發電潛能評估,與電力系統整合規劃方 面的案例,提供讀者分享其成功經驗,期待 未來後繼者持續往前邁進,有朝一日將臺灣 的地熱發電推向高峰。

一、前言

在國家既定再生能源政策中,將推動地 熱發電列為當中重要項目,民國98年起,地 熱發電正式成為再生能源發電設備項目,其 電能臺購費率從4.4655元/度上升到民國112年 的5.1956元/度。民國107年4月11日,環保署


To

「開發行為應實施環境影響評估細目及範圍認定標準」,將地熱發電裝置容量免環評的門檻從0.5 MW(500瓩)放寬到10 MW(1萬瓩)。經濟部於111年5月20日正式公告「地熱能發電示範獎勵辦法」,考量地熱電廠前期探勘之風險高,因此透過獎勵辦法分攤業者探勘風險,另鼓勵地方政府辦理地熱招商,並增訂受獎勵者應繳交探勘與鑽井資料之規定,期能掌握我國地熱資源狀況,公開地熱潛能區域資訊,吸引廠商投資,加速達成地熱能發展目標。

眾多的誘因激勵下,可惜於民國112年, 台電國內地熱發電的裝置容量卻停留在6.4 MW,淨發電量也經常未能超過3 MW。裝置 容量無法擴大的原因有許多討論,主要的困 難,不外乎用地取得、缺乏專法、許可申辦 窗口多、相關許可申辦費時等,筆者認為最 大問題應該還是熱源的供應上。臺灣位於太 平洋火環帶,素有地熱寶島之稱,有足夠地 熱條件,但對地熱發電而言,有辦法找到規 模夠大且穩定地熱的熱源供應,才是有效擴 大裝置容量絕對必要的條件。

根據民國112年6月21日增訂並修正「再生能源發展條例」的條文,法規中定義的「地熱能」指源自地表以下蘊含於土壤、岩石、蒸氣或溫泉之能源。全臺具地熱發電潛力的能源案場基本上可分為火山岩型(高溫蒸氣)、變質岩型(中溫)兩類,通常簡稱為傳統地熱資源,按官方地熱發電單一服務

窗口-首頁(geothermal-taiwan.org.tw)[1]揭露資訊,全臺可開發傳統地熱具989 MW的儲量,到民國114年,政府設定的短期開發目標為20~200 MW。臺灣遍佈的溫泉與地熱,長期以來除溫泉景點遊憩的開發外,其發電潛能也日漸受到重視,圖1為全臺具地熱發電潛力案場的分布情形。對應這些潛力案場,國營事業中油公司已累積34口地熱探勘井,可供香閱。

資料來源: 地熱探勘資訊平臺 geologycloud.tw [2] 圖 1 全臺具地熱發電潛力案場的分布情形

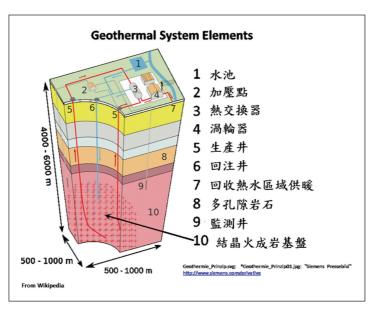
場址區位	溫度範圍(°C)	發電潛能(MW)	2021	2022	2023	2024	2025	歷史探勘 井數	2025目標 (MW)	2030目標 (MW)
大屯山	220-290	514	G5	GB	GB	GC	GC	24	20	200
清水	180-220	61	GC	GC	GC	GC	GC	21	4.5	9
仁澤土場	160-180	25	G5	GB	GB	GC	GC	18	4	8
花蓮瑞穗	140-180	16	G2	G3	G3	G4	G4	2		5.3
台東紅葉	130-190	12	G2	G3	G3	G4	G5	1	1	5
台東知本	140-200	25	G4	GC	GC	GC	GC	7	0.01	9.9
台東金崙	140-200	48	G4	GC	GC	GC	GC	13	0.5	12
台東金峰	140-200	20	G4	GA	GA	GB	GB	1		9.9
廬山	150-210	41		G3	G3	G4	G4	9		
寶來	110-160	14		G1	G2	G3	G4			
霧鹿	150-210	18		G1	G2	G3	G4			
東埔	120-180	16		G1	G2	G3	G4			
谷關	130-180	15		G1	G2	G3	G4			
關子嶺	120-190	11		G1	G2	G2				
中崙	120-185	11		G1	G2	G2				
富源	80-160	9								
紅香	130-170	11								
四品	140-210	18								
烏來	150-200	13							1 Undiscovered(未探勘)	
礁溪	100-160	9								
樂樂	120-140	9								
五區	150-210	18							(有測試井)	
臭乾	135-185	16							ed(已驗證/有)	產能試驗)
茂邊	170-210	19						iA 有電廠		
桃林	150-210	14						GB 有電廠		
比魯	130-190	14					(GC 有電廠	軍轉中	
馬陵	130-170	11								

表 1 全臺具地熱發電 27 處潛力案場的開發資訊

政府相關部門(中央地質調查所)更於 民國110年(西元2021)起,盤點並揭露全臺 具地熱發電27處潛力案場的開發資訊,其成 果如表1所示。同時間起,政府也透過中央地 質調查所編列使用政府前瞻預算開始陸續進 行優先案場(臺東延平、花蓮瑞穗、廬山、 谷關、東埔、寶來、關子嶺)的補充探勘, 並嘗試建構「加速全面性地熱資源探查及資 訊供應計畫」,以提供足夠熱源資訊,吸引開 發商投資。

參考過去資料[3],臺灣本島除大屯火 山區屬火山蒸氣型地熱,其餘多半皆屬與中 央山脈或雪山山脈浩山運動有關的變質岩區 (如官蘭、花東)內,屬裂隙傳導為主的熱 水型地熱。能源局推估:大屯山具514 MW的 地熱儲量,清水則具61 MW的地熱儲量。根 據表1盤點資料,目前全臺已知地熱儲層溫度 超過200°C且估計發電潛能排名領先的案場, 第一名為「大屯山」,第二名為清水」。剛 好是上述火山岩型(高溫蒸氣)與變質岩型 (中溫熱水)的典型代表(參見圖2)。

大屯山地熱的調查,早自民國55年就已 展開,直到目前,大屯山地熱區內終於有 1 MW的示範電廠有四磺坪地熱示範區(天籟



(a) 大屯山地熱/四磺子坪地熱區(高溫蒸氣為主)

(b) 清水地熱區(中溫熱液為主)

圖 2 傳統火山岩型 (大屯山)、變質岩型地熱 (清水)

資料來源:增強型地熱系統 - 維基百科 (wikipedia.org) [5]

圖 3 增強型地熱系統 (簡稱 EGS 系統)

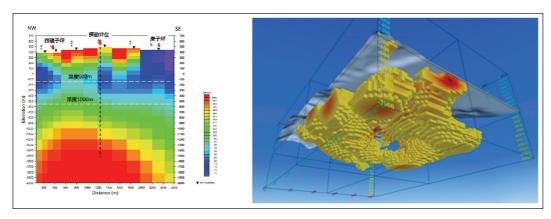
溫泉社區附近)即將建成。清水地熱則已於 民國110年已成功開發新一代規模達4.2 MW 的商轉電廠。為國內地熱發電的停滯發展困 境中,打了一劑強心針。

鑒於傳統地熱資源的侷限,各國為擴大

地熱的可發電規模,紛紛倡議「深層地熱」的開發,這將是搭配再生能源推廣的未來世界趨勢。增強型地熱系統(簡稱EGS系統) 為深層地熱的代表(參見圖3),有別於傳統的地熱井利用流經天然岩石的裂隙(如裂縫和斷層)滲透上湧至地表的的高溫流體

(蒸氣或水), EGS系統通過水力破裂人工 致裂方法(hydraulic stimulation)來增強深 部(3-6公里)岩石的渗透性。這涉及使用深 鑽井於井下以高壓注入流體來壓裂深部鑽孔 岩壁(例如深埋的花崗岩),使得更深和更 高的岩石所含地熱潛力(150-200°C)可以用 作熱源發電。按官方揭露資訊,全臺具高達 33,640 MW(或33.64 GW)的可開發儲量。

深層地熱的開發關鍵技術,需要深鑽井 的能力,搭配需要大規模初期投資,目前世 界各地陸續有案例出現,但仍屬萌芽階段。 政府經濟部能源局於民國99年即委託財團法 人工業技術研究院(以下簡稱工研院)進行 「地熱能源永續利用及深層地熱發電技術開 發計畫 | 三年計畫,以及後續民國102年進行 「深層地熱發電技術研發計畫」,開始長期推 動相關研究。民國102年,能源國家型科技計 畫成立地熱發電主軸計畫,也開始推動進行 EGS深層地熱的相關研究, 惜礙於經費規模有 限,在官蘭紅柴林區試鑽了兩口深度2200 m 與2800 m的探勘井(民國104~106年)後,因 溫度與試產成效不佳,計畫結束。


目前則尚無針對深層地熱的第一口深鑽 井出現。經濟部(能源局)於公共建設類前 瞻基礎建設計畫提報「東部地區地熱鑽井計 畫」,計畫已於民國111年已經蒙行政院核 定,預計民國113年在官蘭地區完成1口鑽深 4.000公尺之深層地熱探勘井鑽井工作,若能 成功,將能開創臺灣地熱發展新的視野。

二、地熱資源量與發電潛能

(一) 地熱資源調查

前述官方所言:「全台可開發傳統地熱具 989 MW的儲量;大屯山具514 MW的地熱儲 量,清水則具61 MW的地熱儲量」,這些論 述或說法是對應地熱區尺度的地熱探勘的大 略推估,僅能作為有限資料下的初步參考, 實際可開發儲量需視新增調查資料,滾動調 整。換言之,地熱資源量的開發潛能(或地 熱儲量)必須根據地表地質、地球物理、地 球化學等資源的探查手段,再綜合有限的鑽 探成果,建立地質概念模型與熱源模式,進 行有效地熱儲量、或實際可開發儲量推估。 以圖4為例,於地表利用地球物理大地電磁法 (簡稱MT法)取得之二維剖面式或三維逆推 式地下地質構造(低電阻區)探查成果,可 據以透視解析試驗場址熱源蘊藏分布空間概 念模型等資訊。MT法所建立的二維電阻率剖 面(工研院,2015[6])或三維概念模型是目 前一般提供探勘或開發鑽探井位評選最重要 的參考。概念模型是一種合理的推估,並非 絕對,因此地熱資源探勘存在著許多不確定 的因素,具有高度的投資風險。過去有限的 探勘資料顯示若干地熱潛能區雖具備足夠溫 度條件,但對地熱是否能成為發電基載,仍 須進一步掌握地熱儲集層的特性與地熱流體 的穩定產出能力,方有利於地熱發電的實質 開發。

(a) 二維例 (磺嘴山北坡)

(b) 三維例(瑞穗地區)

圖 4 大地電磁 (MT) 法地熱資源的探查成果範例

美國、紐西蘭、日本等地熱發電先進國 家常用體積法為主軸的蘊藏熱能法(Stored Heat Method)為基礎,來估算地熱儲量 (O) 與地熱發電潛能(E),各國估算方式 大同小異。地熱儲量(Q)通常以百萬焦耳 (MJ) 為單位。國內的評估基礎,主要亦沿 用體積法的精神,引用一定的經驗方法或公 式計算(李清瑞等人,2012[7])。例如,在 假設熱液型地熱系統於封閉地層壓力時,均 以液態存在且無蒸汽儲熱量,其總熱蘊藏量 計算主要參數包括變動參數(儲層面積、儲 層平均厚度、儲層初始溫度、孔隙率)與固 定參數(基準溫度、岩石密度、岩石比熱、 儲集層之含水飽和度)。其中變動參數中的孔 隙率,可解讀為岩體的等效孔隙率,當岩石 屬變質岩(例如板岩或片岩)時,岩石材料 本身孔隙可能因變質作用而降至甚低(孔隙 率小於1%),此時熱流於地下岩體內對流傳 導時,主要是靠裂隙(如節理面,弱面,斷 層等)作為主要連通介質。

民國81~95年間,國內地熱資源調查限於停頓。自民國95年起,經濟部能源局先後透過經濟部能源科技研究發展計畫、研究機構能源科技專案,啟動新一波地熱發電技術開發推動計畫。表2所示為能源局(委託工研院)於民國95年以後對地熱資源、地熱發電研究經費的投入統計。民國95年至今,主要研究目標也是以上述清水、大屯山兩處案場為主。這些研究經費的投入,對兩處案場的地熱資源量的開發潛能,提供了必要的資訊,對於國內的商轉電廠催生,的確也帶來了巨大的影響。

(二)發電潛能評估

發電潛能(E,單位百萬瓩或MW)評估 方法,由地熱儲量(Q,單位百萬焦耳或MJ)

報告年份	計畫名稱	研究目標	經費(仟元)
2007*	95 地熱發電技術開發推動計畫 (1/1)	清水地熱區	59,000
2008*	96 地熱發電技術開發及多目標利用推動計畫 (1/3)	清水地熱區	73,036
2009*	97 地熱發電技術開發及多目標利用推動計畫 (2/3)	清水地熱區	54,915
2010*	地熱發電技術開發及多目標利用推動計畫 (3/3)	清水地熱區	?未執行
2011*	99 地熱能源永續利用及深層地熱發電技術開發計畫 (1/4)	清水地熱區	65,283
2012*	100 地熱能源永續利用及深層地熱發電技術開發計畫 (2/4)	清水地熱區	38,760
2013*	101 地熱能源永續利用及深層地熱發電技術開發計畫 (3/4)	清水地熱區	44,652
2014#	102 深層地熱發電技術研發計畫	大屯火山區	52,816
2015#	103 高效能地熱發電技術研究計畫 (1)(104-2 月)	大屯火山區	54,802
2015#	104 高效能地熱發電技術研究計畫 (2)(104-12 月)	大屯火山區	72,934
2017#	105 高效能地熱發電技術研究計畫 (1/3)	大屯火山區	79,221
2018#	106 高效能地熱發電技術研究計畫 (2/3)	大屯火山區	89,072
2019#	107 高效能地熱發電技術研究計畫 (3/3)	大屯火山區	89,331
2020#	108 地熱發電整合推動與技術研發計畫 (1/3)	+ 仁澤土場區	88,935
2021#	109 地熱發電整合推動與技術研發計畫 (2/3)	地熱發電推廣	?不明
2022#	110 地熱發電整合推動與技術研發計畫 (3/3)	地熱發電推廣	51,123
2023#	111 地熱電廠整合推動計畫 (1/3)	地熱發電推廣	不提供

表 2 經濟部能源局 (委託工研院) 地熱發電研究經費投入

註:*經濟部能源科技研究發展計畫 #研究機構能源科技專案

資料來源:地熱發電單一服務窗口-臺灣地熱資源-資訊公開區 (geothermal-taiwan.org.tw)

轉換,計算式(李清瑞等人,2012[7])如下:

$$E = \left[\frac{Q \cdot R_f \cdot \eta_c}{F \cdot L} \right] \tag{1}$$

式(1)中,E為發電潛能(MW);Q為 蘊藏熱能 (MJ); R, 為熱源回收率;h。為能 源轉換效率;F為電廠運轉率;L為電廠壽命 (年)。

實務上,熱源回收率 (R_f) 通常取值介 於 $0.1\sim0.13$;能源轉換效率(h_c)通常取值介 於0.08~0.09;電廠運轉率(F)通常取定值 0.94; 電廠壽命(L) 通常取定值30年。

清水地熱區則具61 MW的發電潛能, 也是利用上述透過體積法地熱儲量的方法所 推估出的概略值。體積法的變動參數中,儲 層面積、儲層平均厚度的估計值會直接影響 地熱儲量的估計結果,然而如何準確估計儲 層面積與厚度,絕非易事,需要長期於案場 的開發過程,通過對儲層有效管理的經驗累 積,才能實際檢驗。

三、舊清水電廠與再生計畫

民國64年清水地熱區先期第一口井(IC-1)

W

開鑽,由工研院進行地熱資源評估及探勘, 隨後(民國65年)由中油公司接續負責系列 生產井鑽設及地熱流體生產。先後於清水區 的鑽井,有工研院的IC-1, 2, 3, 6, 7, 8, 10, 11 等8口地熱調查探勘井,深度約為450~500公 尺之間;與中油公司鑽鑿的IC-4, 5, 9, 12, 13, 14, 15, 16, 17, 18, 19等11口地熱生產井,平 均深度約為1,980公尺。這在國內各潛能地 熱區,累積的探勘井與生產井的數量,堪稱 空前。清水地熱區中油公司的最後一口鑽井 (IC-19井)於民國75年結束。工研院IC-11 井於民國65年結束後,隔了30年直到民國95 年,能源局推動清水井場再生計畫,由工研 院於民國95年新鑽IC-20井(503公尺),以 及民國100年新鑽IC-21井(1058公尺)。總 結清水地熱區探勘井成果顯示:地熱儲層流 體為鹼性(pH值8-9),水質屬(Na + K) - HCO₃水,含非凝結性氣體(NCG)比例為 3-30% •

中油公司所鑽鑿11口井地熱生產井,其中8口成功成為生產井(包括IC-4,5,9,13,14,16,18及19號井),其生產深度自900~3,000公尺,井內溫度約攝氏200~230°C。回顧民國70年,基於熱源產能充足,清水地熱區乃因而在當時國科會的推動下建構了一座裝置容量為3MW先導型地熱發電試驗廠,由中油公司負責鑽井維護地熱流體生產,並交由臺電公司(蘭陽發電廠清熱分廠)負責操作運轉試驗。該發電機組為單閃發蒸汽發電方式,僅利用地熱總產量中

10~20%之蒸汽,大量之高溫熱水則排放未用,因供汽條件(壓力、流量)未能滿足發電機規格,自始發電效率即偏低。清水地熱區因地熱產量逐年衰減以致發電量亦隨之遞減,從先期1,600 kW發電量至關廠前剩餘177 kW。而於民國82年11月停止發電試驗,電廠關閉前累計運轉時間長達12年有餘。產能衰減原因主要為未充分掌握儲集層特性,生產過程未達最佳生產管理而過度降壓生產造成管線結垢所致(李毓仁等人,2013[8])。

於民國99年,能源局於推展清水井場再生計畫期間,透過工研院同意陽碁及結元公司共同參與「地熱發電測試評估」計畫,豐宇鑽井工程公司參與「地熱井探測機具開發」計畫。協助推動地熱發電測試評估子計畫。經徵選及審查程序,於民國99年7月15日完成與陽碁及結元公司二家廠商簽約,分別提供有機朗肯循環(Organic Rankine Cycle)及卡里那循環(Kalina Cycle)系統發電機組,發電運轉測試於99年7月15日至100年1月30日間進行。

民國101年,工研院地熱利用技術研究室依據宜蘭清水地熱IC-21地熱井條件進行設計、開發一50 kWe地熱雙循環ORC(Organic Rankine cycle;有機朗肯熱機循環)發電機組和周邊冷熱源循環供應設備(李毓仁等人,2013[8])。其中ORC溫差發電機組包括ORC熱力循環迴路、熱力作功元件(蒸發器、冷凝器、螺桿式膨脹機、內嵌式發電

機、工作流體升壓泵等)和機電控制系統 等,於清水地熱現場進行ORC機組性能測試 與運轉展示。

民國105年,工研院建置300 kW等級國 產ORC發電機組研發平台,位於原官蘭清 水地熱50 kW發電示範發電系統旁,其中包 含: 土建鋼構工程(鋼棚)、1000 RT冷卻水 塔、IC-21管線銜接、控制電力盤體、控制 室、回注系統、軟水系統及 450kVA受電設 備建置等。該研發平台沿用50kW之軟水蓄水 桶、IC-21地熱井及9噸蓄水槽,另將原受電 設備90 kVA升級為450 kVA、冷卻水塔由200 RT升級為1000 RT,以提供較大型發電機組 淮行運轉測試。

300 kW等級發電機組研發平台於民國 105年10月建置完成。測試平台藉由發電機 組實機運轉進行測試,以每日出水噸數19.2 TPH之地熱水供應(地熱出口溫度142°C、壓 力331 kPa-G條件下),發電機組發電量可達 208 kW。诱過發電機組現地測試及實際發電 輸出,以驗證此發電機組研發平台之功能性 及可行性。上述機組研發平台成果技轉民間 後,由結元科技股份有限公司接手。之後, 官蘭「清水300 kW地熱電廠」開發案完成再 生能源發電設備同意備案,於民國107年11月 與台電公司完成併網售電簽約,自民國107年 11月30日開始併網送電試運轉。

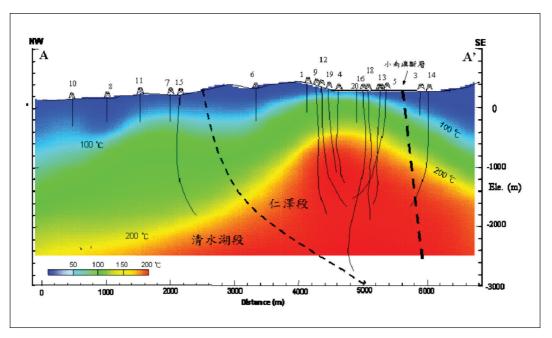
四、新一代清水雷廠

(一) 概述

民國82年11月停止發電試驗後,台灣中 油公司乃於民國89年將清水地熱礦權歸還經 濟部,並完成地熱井報廢手續,再於民國92 年間將8口地熱井無償撥贈予宜蘭縣政府。宜 蘭縣政府主導的清水地熱發電廠BOT及ROT 案與民國106年7月14日與「官元股份有限公 司」(以下簡稱宜元公司)簽約,開啟新一 代清水地熱電廠的重牛里程碑。

本文以下部分,特以宜元公司經營的新 一代清水地熱電廠為例,如何將昔日失敗的 清水地熱電廠,從民國106年到民國110年的 政府與業者BOT案的合作中浴火重生,在民 國110年10月27日獲得經濟部能源局核發的電 業執照,成為全國目前唯一商轉(裝置容量 4.2 MW)的百萬瓩級地熱發電廠,提供讀者 分享其成功經驗。

清水地熱區位於官蘭縣大同鄉清溪段, 清水地熱公園旁。台七丙線為本區唯一之聯 外道路,由清水橋頭進入本廠址之產業道 路,路寬僅約4~6公尺。新一代清水電廠計 畫(以下簡稱本案)所在的清水地熱區場址 與昔日舊清水電廠大致相同。場址緊鄰清 水溪,現屬水利單位劃設之行水區管制區 域範圍。周邊為溪谷地型,坡度頗大。圖5 所示為清水地熱區內新一代兩組發電機組


圖 5 清水地熱區內各井所在位置

(300 kW、4.2 MW)與各既存井相關所在位置。基地範圍:北區1.9637公頃;南區5.839公頃。隨著清水溪斷層的走向,地熱流體也向北北西方向移動,既存井資料顯示,「南井場」的井中的壓力略高於「北井場」。計畫場址內之南、北井場兩塊腹地是大溪及赤鹿坑溪所沖積而成的小型河灘平原。

本案主要發電設備及地熱井頭均位於清 溪段12-1號,發電廠所佔土地面積約為2公 頃,發電廠所需土地使用分區為森林區。300 kW發電機組位於場址「北井場」,本案4.2 MW發電機組位於場址「南井場」,參見圖5 所示。

(二) 地熱資源量

清水地熱區內的地熱資源,歷來的調查研判係一個中新世廬山層仁澤段板岩體內,由三個主要斷層地質構造所導控的變質岩熱儲層(李伯亨等人,2013[9]),斷層包括:(1)地熱區西邊沿清水溪分布的北西-東南走向的「清水溪」斷層垂直的小南澳斷層,以及(3)「北井場」北側也是與「清水溪」斷層垂直的所謂G斷層(G-fault)。這三個主要的斷層所形成的破裂板岩地塊,可能也是導致高溫上湧(upflowing)和流出(outflowing)的地熱流體的可能儲層或

(摘自李清瑞等人,2012[7])

圖 6 清水地熱區地下溫度分布剖面與既存井關係圖

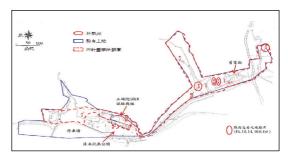
通道。圖6所示為清水地熱區透過工研院、 中油公司歷來所有的既存井量測地下溫度分 布所繪製的剖面概念模型(李清瑞等人, 2012[7]),此概念模型筆者認為對於清水地 熱區地熱資源分布的解釋可信高,亦能具體 符合大量鑽井成果。至於地熱資源區的高溫 似乎為開放型並向東北側山區延伸,擴大地 熱資源量,後續仍然需要通過更多鑽井來進 一步探查。

依工研院團隊(李清瑞等人,2012[7]) 的估計:清水地熱具產能可逕行開採的核心 區(溫度高於180°C),總蘊藏熱能介於3.7E + 11~5.6E + 11 MJ; 而潛能區(溫度高於 160°C),其總蘊藏熱能介於1.2E + 12~1.8E + 12 MJ。經熱源回收率與能源轉換效率的轉換 後,由總蘊藏熱能所估算出的發電潛能在核 心區約為3.7~7.4 MW;潛能區之發電潛能約 為10.4~19.7 MW。換句話說,溫度高於160°C 可逕行開採的發電潛能約在14~27 MW左右, 此結果相對前述官方所言:「清水則具61MW 的地熱儲量」相對較為保守,主要差異可能 源自兩者考慮的資源面積範圍不同。

(三)BOT + ROT 開發

宜蘭縣地熱資源豐富,縣府民國101年與 噶瑪蘭清水股份有限公司簽約,擬在清水地 TO V

熱區設置發電機組,後因噶瑪蘭公司財務問題而解約。隨後,本案依據「促進民間參與公共建設法」,在「電業設施」類採「BOT+ROT」方式招商(促參法第8條相關規定及相關法令辦理),將清水地熱發電區委由民間投資新建、增建、改建、修建經營及管理。根據民國105年1月25日招商說明會本案用地範圍(土地權屬:宜蘭縣政府)包括宜蘭縣大同鄉清溪段7筆地號土地,面積合計5.84公頃。民國105年11月4日重啟本案「BOT+ROT」採購標案,由台灣汽電共生股份有限公司(以下簡稱台汽電)、結元科技股份有限公司(以下簡稱台汽電)、結元科技股份有限公司(以下簡稱結元公司)合組開發團隊被評為最優申請人,取得標案承攬權。


民國106年7月14日,台汽電和結元公司 合資成立之「宜元公司」完成與宜蘭縣政府 BOT簽約(參見圖7)。首期規畫裝置容量 1 MW(一百萬瓦),年發電量九百萬度,扣 除廠區用電,可供七千戶家庭使用。最快三 年後投入商轉,再視營運狀況,提出第二期 計畫,二期總裝置容量4 MW,可供應兩萬 八千戶家庭用電。宜元取得發電廠廿年營運權,營運期間,預計每年要交付縣府兩百萬 元左右權利金。

為達成首期與二期目標,主辦機關宜蘭縣 政府共交付14筆土地,包含廠址範圍內現存 4口地熱井(編號5、13、14及16)以及舊台 電辦公室、警衛亭等5處水泥建築物,供本案 使用,因此開發基地範圍內共有16筆土地, 總面積由首期規畫5.84公頃增為7.946公頃。

發電設施係利用地熱能將熱能轉換成電能發電,為確認本案地熱能的熱源充足,宜元於民國106年1月間,除透過台灣汽電委託菲律賓EDC公司[10]評估潛在地熱蘊藏量,研究結果顯示本案廠址地熱的熱源潛能達6.7 MW;亦同步參考工研院「清水地區地熱發電系統探勘評估及利用規劃報告」及「清水地熱區開發資源蘊藏檢討報告」,兩份報告均指出清水地熱潛能範圍約3.5平方公里,發電潛能達15 MW,以廠址可供鑽井生產範圍約1平方公里(即100公頃)推估,可供本地

(a) 簽約儀式

(b) 用地交付

圖 7 宜元公司與宜蘭縣政府完成簽約與交付用地範圍

熱電廠發電使用之地熱資源達5 MW以上。 綜上,本案廠址開發規模業經國內外專業單 位探勘研究,對於熱源規模及分佈有高度共 識,廠址所在區段地下熱源足以供應本案4.2 MW發電之需求。

本案屬地熱再生能源BOT開發,使用能 源為地熱能,地熱能燃料主要依賴生產井供 應,可直接從廠址內地熱井提取,無需對外 引接燃料管線供應及輸入。取熱後回注原地 下層,亦無燃料儲存問題。本案廠區所有地 熱生產井皆位於廠址之內,原BOT開發首期 係規畫第一階段以修復既有4口地熱井(IC-5、IC-13、IC-16作為生產井、IC-14作為回 注井),預期達成設置與運轉裝置容量達 1MW之地熱發電廠。由於本案二期4.2 MW

發電計畫熱源供應量須約130公噸/小時,主 要由現存4口地熱井(編號5、13、14及16) 做為熱源供應,並視需要鑽鑿新井。於之前 圖5所示,除包括地熱區歷來所鑽各井所在 位置,亦有近期開發所新鑽鑽井,其中包括 R1井、R2井、R3井為BOT案成立後新鑽探查 井,除補充地質外,規劃用為回注井使用。

本案採用國際大廠ORMAT公司所出產的 地熱雙循環ORC發電機組,該發電機組係利 用有機工作流體(戊烷)於熱交換器內汲取 地熱源的熱能,利用渦輪機將熱能轉換為機 械旋轉能,再利用發電機將此旋轉動能轉換 為電力輸出。本案ORC系統之基本運行原理 圖,詳如圖8所示。

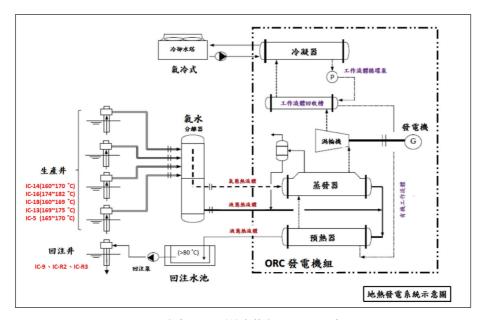


圖 8 本案 ORC 系統之基本運行原理示意圖

由於本案之地熱井皆為自湧井,熱源為雙相流體(蒸氣、熱水),上升至井頭閥時熱源之閃發蒸汽含量為9~30%,故自井頭閥出口後,規畫將熱源以管線輸送進入氣水分離器(Separator),分離後之汽態與液態熱源分別進入ORC系統之熱交換器,與工作流體進行熱交換,熱交換完成後之液態熱源輸送至回注槽,回注至原地下熱源層。圖9所示為本案地熱流體輸送管線(蒸氣、熱水混合)流路的施工情形。流體輸送管線有2支引水幹管(16吋/10吋)併入氣水分離器,熱源輸送採雙相流體設計,降低能耗。另有1支回水管(10吋)可將地熱流體輸送至回注區,泵入儲集層。

(四) 電業籌設申請

由宜元按BOT合約規範所成立的「清水地 熱電力股份有限公司(以下簡稱清水電)」, 負責地熱發電籌設建廠與維運。本案熱源供應 量充足,且經評估適合使用中溫雙循環ORC 發電機的前提下,進行地熱發電建廠可行性 高。建廠的過程首先需辦理電業籌設申請,由 本案經驗,應辦事項至少應包括以下事項(包 括各事項所需花費時間估計):

- 簽署投資契約(105/11/4得標,106/7/14簽約)
- BOT用地營運資產點交



圖 9 地熱流體輸送管線(蒸氣、熱水混合)流路的施工情形

- 環境調査(7個月)
- 取得地方主管機關同意承(1個月)
- 取得發電廠土地使用同意書及地政機關意 見書(1個月)
- 取得發電廠之電源線引接同意書
- 取得環保署「免環評核備函」(1個月)
- 取得能源局「電業籌設許可」(6個月)
- 能源局再生能源設備同意備案(2~3 個月)
- 台電初步併聯協商(5個月)
- 簽訂購售電合約(1~2個月)
- 取得電廠施工許可(7個月)

依照經濟部「再生能源發展條例」第八 條規定:『再生能源發電設備及其所產生之

電能,應由所在地經營電力網之電業,衡量 電網穩定性,在現有電網最接近再生能源發 電集結地點予以併聯、躉購及提供該發電設 備停機維修期間所需之電力』。本案發電機 產出電力,由6.6kV昇壓至11.4kV,經開關盤 隔離與保護後,利用自建自備電桿,以25kV-XLPE電纜(150 mm²)併聯台電電桿(桿 號:地熱#1,電力座標:E7945/GC15E7945/ GC15) 桿上開關,引接至台電公司11.4kV饋 電系統,進入台電公司電網。

本案於民國107年7月間取得台電再生 能源(地熱發電設備第一型)併聯審查意見 書,如圖10所示。台電指示於加強電網工程

再生能源發電系統併聯審查意見書

申請人清水地熱電力股份有限公司(籌備處),在宜蘭縣大同鄉清溪段12-1 地號興建第一型以地熱為動力 之發電設備,預定民國109年商轉,申請併 聯至本公司11.4 kV 系統乙案「113107GP0501」,經檢討後提出審查意見 如下:

一、 引接併聯計畫

■ (適用一般再生能源發電)

清水地熱電力股份有限公司(籌備處) 地熱發電計畫,總裝置容量 4200kW。申請以一回電纜線併接到台電電桿桿號地熱 #1(E7945GC15),經審查:

□原則同意。

■於加強電網工程E7652FB08-E7651FD36電網強化完成後同意 (上述加強電網工程費用由本公司與申請人均攤)。

圖 10 台電再生能源發電系統併聯審查意見書

E7652FB08-E7651FD36電網強化完成後,同 意本案總裝置容量4,200 kW (4,2 MW)併聯 申請。並隨後於取得能源局核發本案「電業 籌設許可」函後,辦理後續併聯初步、細部 協商,以及加強電網工程。

(五)實際建廠工程

清水地熱廠址為變質岩型地熱,所在地 由板岩(Slate)組成,液態熱源比例較高, 分析既有地熱相關探勘資料及既有井排放測 試數據,熱源熱度為220-240°C,適合建置中 低溫熱水型地熱發電廠,發電系統採用ORC 發電機組;由ORMAT公司ORC原廠依本地區 之地熱源特性(如溫度、蒸汽氣含量及流量 等)提供客製化設備。本案發電廠規畫建置 於南井場區(參見圖5),於電業籌設申請完 成後,進入實際建廠工程,建廠完成實際商 轉前,其過程大致程序如下(包括各程序所需花費時間估計):

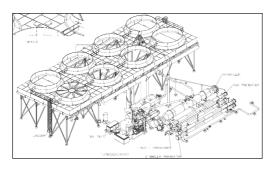
- 水保報告書審核通過(10個月)
- 水保工程施工(6個月),參見圖11
- 環境調査(7個月)
- 地熱教育館施工(15~16個月)
- 地熱蘊藏量再評估(3個月)
- 既存舊井水權狀再申請(11個月)
- 既存舊井診斷與洗井(13個月)
- 結垢抑制設備建置(3~4個月)
- 新增探勘井鑽設許可(7個月)
- 新增探勘井鑽設併取得溫泉開發許可(11個月)
- 發電機組訂購(7個月)
- 發電機組製造與交貨(13~14個月)
- 全廠設計(8個月)
- 附屬設施施工(9~10個月)

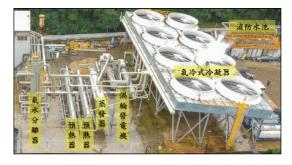
圖 11 水保工程施工概況

- 機組安裝、測試、試運轉(4~5個月)
- 竣工查驗後取得電業執照(2~3個月)
- 商轉

(六) 電廠規設

由於本案發電設備需按ORMAT公司ORC 原廠依本地區之地熱源特性提供客製化設備、 因此ORMAT公司也提出設計界面的配套需 求,包括工藝流程圖(PFD)以及管道和儀 表圖(P&ID),以供地熱流體收集系統、分 離系統、回注系統、有機工作流體(Working fluid) 填充和排放系統、壓縮空氣系統、消 防系統的控制設計等。清水電委託國內廠商 負責上述設計界面整合的部分。電氣工程部 分,清水電則委託國內相關技師協助電力 系統單線圖、UPS架構與箱體、電器設備配 置、室內外標準箱體、高壓管路埋設標準、 台電高壓電錶箱、VCB(真空斷路器)等所 需設計。


本案依設計所需建置設備主要包括:汽 輪機及附屬設備、發電機及附屬設備、變壓 器及其附屬設備、避雷器設備及附屬設備、 蓄電池組及附屬設備、保護電驛設備及附 屬設備。主要發電設施與相關數量,如表2 所示,主要設施及附屬控制設備規格規劃如 表3所示。圖12所示分別為發電機及附屬設備 (4.2MW, ORMAT公司)的主要部分:氣冷 式雙循環發電機組設計圖與完成圖。


表 2 主要發電設施

設備	數量	參考廠牌型錄
汽輪機	一部	ORMAT OEC Turbine
同步發電機	一部	Kato Engineering Turbine Generators
熱交換器	一組	ORMAT Heat Exchanger
氣冷式冷凝器	一組	ORMAT Air Cooled Exchanger
工作流體循環泵	兩台	Floway VT Pump

表 3 附屬控制設備規格

設備	數量	參考廠牌型錄
汽輪機	一部	多段脈衝式、1800 轉
同步發電機	一部	4,200 kW、6.6 kV、3 相交流、60 赫茲、同步式、1800 轉
熱交換器	一式	殼管式、不鏽鋼 TUBE
工作流體循環泵	兩台	多段離心式,200kW
冷卻系統	一部	氟冷式冷凝器
升壓變壓器	一部	6.6 kV/11.4 kV \ 5000 kVA
輔助變壓器	一部	6.6 kV/0.46 kV \ 800 kVA
馬達控制中心	一式	3 相、460 kV
控制系統	一式	PLC \ HMI

(a) 電機組設計圖

(b) 發電機組完成圖

圖 12 氣冷式雙循環發電機組(4.2 MW, ORMAT 公司)

資料來源:https://www.youtube.com/watch?v=Y2oPEKAudu0&t=310s

圖 13 控制系統 (PLC、HMI) 介面

電力系統部分,本案電源線採用1/C 25 kV XLPE銅導體電纜(150 mm²),每相×1 條電源引接線。本計畫需建置電源線距離短,工程簡單,故依據與台電公司之細部協商結果,於電廠施工期間配合台電作業完成。

發電機發電電壓為11.4 kV,經一回電纜線,引接至台電公司11.4 kV饋電系統躉售電力。發電過程可透過嚴密控制系統(PLC、HMI)介面,可允許ORMAT原廠以遠端控制連入,進行例行偵錯、必要控管、維護作業,遠端控制系統展示介面,如圖13所示。

總發電量歷時曲線例(2022年2月中連續兩週)

圖14所示為,於111年2月連續兩週所記錄的 資料畫面,顯示總發電量(Generator active gross power)約3 MW (2.72~3.273 MW)的 歷時曲線例。

本案目前在使用五口(原本僅規書四 口)生產并情境估計可產出熱源包括:(1) 高溫蒸氣與不凝結氣共35.38 TPH,與(2) 高溫熱水133.62 TPH,分別可超過ORMAT 機組規範需求量23.5 TPH、133.5 TPH。但 實際產出熱源會因生產井井況變化、管路輸 送效率狀況不夠穩定等等因素, 使系統無 法滿載發電,因此啟用至今總發電量(約3 MW)與裝置容量(4.2 MW)尚有差距,這 將需要累積系統操作經驗、監測生產回注井 的動態變化、良好的熱儲層管理,或視情況 新增生產井等,相信最終得以優化系統達成 目標。

(七)完工運轉(試運轉)與啟用典禮

本案建置完成的新一代清水地熱電廠, 本電廠於民國110年6月15日下午約4:00開始 啟動機組,完成96小時連續運轉,機組穩定 控制於1.8MW發電量,通過完工運轉(試 運轉)。本案在民國110年10月27日獲得經 濟部能源局核發的電業執照,成為全國目前 唯一商轉的地熱發電廠官蘭清水地熱電廠。 民國110年11月23日重新啟用,副總統賴清 德、經濟部次長曾文生、宜蘭縣長林姿妙與 立委蔡壁如都到場見證這座關廠近30年(民 國82~110年)的電廠啟用典禮,如圖15所 示。這座耗資7.65億、經過五年重新修整、 攜建,終於完成4.2MW的地熱發電容量,每 年可提供約2500萬度綠電,約18萬噸的減碳 效益。

(b) 即時發電量 3.2 MW

資料來源: http://news.ltn.com.tw/news/life/breakingnews/3745391

圖 15 新一代清水地熱電廠啟用典禮(2021/11/23)

新一代清水地熱發電廠為結合發電、休 間及教育之多功能場域,預期每小時平均可 發電量約3150度(每日發電量75,000度),可 供約1萬戶小家庭用電。本BOT案經營運權 利金方面,自營運開始,依每年電力躉售收 入,宜蘭縣政府估算可收取新臺幣約200萬元 營運權利金(營運權利金以乙方每年躉售電 力收入之2%計算),總計20年之營運期共可 收取約4千萬元。

五、結論與建議

目前在眾多的誘因激勵下,台電官網顯示國內地熱發電的裝置容量卻停留在6.4 MW,淨發電量也經常未能超過3 MW。裝置容量無法擴大的原因有許多討論,最大問題應該還是熱源的供應上無法達有效規模。短期內恐需要更多更廣的熱源探勘經費,揖注在地熱有效資源量的開發上。 目前全臺已知地熱儲層溫度超過200°C 且估計發電潛能排名領先的案場,第一、二 名為大屯山、清水,分別也是火山岩型(高 溫蒸氣)與變質岩型(中溫熱水)的典型代 表。能源局推估:大屯山具514 MW的地熱儲 量(高溫蒸氣),清水則具61 MW的地熱儲 量(中溫熱水)。兩案場在過往政府的經費投 注下,擁有最多的資源調查的成果,其熱源 特性的掌握相對清楚,在開發地熱發電的開 發風險上相對低,無疑是政府再生能源發展 的指標案場。

大屯山案場目前尚未成功開發地熱發電廠,刻正加速建置第一座先驅型地熱發電廠(1 MW)於四磺子坪示範地區。民國110新一代清水地熱電廠(4.2 MW)的成功變身,為國內地熱發電的停滯發展困境中,打了一劑強心針。目前清水地熱電廠總發電量(約 3 MW)與裝置容量(4.2 MW)尚有差距,

這需要累積系統操作經驗、生產回注井的動 態監測、與良好的熱儲層管理,相信最終得 以優化達成目標。

參考文獻

- 1. https://www.geothermal-taiwan.org.tw, 地熱發電單 一服務窗口-首頁 (geothermal-taiwan.org.tw)
- 2. https://geotex.geologycloud.tw/main/explo rationResults, 地熱探勘資訊平臺 (geologycloud.tw)
- 3. 工研院能源與資源研究所 (1994),「臺灣地熱探勘 資料彙編」。經濟部能源委員會研究報告。
- 4. Levine Aaron, Amanda Kolker, Katherine R. Young, Anna Wall, Alex Badgett, Erik Witter, and Patrick Dobson (2022), GeoRePORT Protocol Volume I: Background Document. Golden, CO: National Renewable Energy Laboratory. NREL/TP-6A20-81952.
- 5. https://zh.wikipedia.org/zh-tw/ 增强型地熱系統, 增強型地熱系統-維基百科,自由的百科全書 (wikipedia.org)
- 6. 財團法人工業技術研究院(2015),「高效能地熱發 電技術研發計畫」。經濟部能源科技研究發展計畫 104 年度執行報告
- 7. 李清瑞、韓吟龍、江道義(2012),「清水地熱區儲 集層參數研究及發電潛能評估」。臺灣鑛業,第64 卷第1期,第9-17頁,民國101年3月。
- 8. 李毓仁、劉力維、柳志錫、郭泰融(2013),「宜蘭 清水地熱溫差發電機組介紹」, 鑛冶 57/4, 第126-131 頁,一○二年十二月。
- 9. 李伯亨、凌璐璐、張可霓、王洋、郭泰融、柳志 錫、歐陽湘(2013),「宜蘭清水地熱儲集層數值模 型與生產模擬研究」, 鑛治 57/4, 第1-12 頁, 一○ 二年十二月。
- 10. Energy Development Corporation (2018), Resource Re-Assessment and Development Strategy, CHING-SHUI GEOTHERMAL PROJECT, Report Submitted to Taiwan Cogeneration Corporation.