

無人機酬載與應用趨勢分析

中山科學研究院航空研究所資深工程師/林昱甫 中山科學研究院航空研究所資深工程師/馬鈞文 中山科學研究院航空研究所實習生/陳力諺 中山科學研究院航空研究所實習生/彭智冠

關鍵字:UAV、UAS、酬載、EO/IR、光達、超音波傳感器、多光譜感測器、立體視覺 感測器、飛時測距感測器 (TOF)、結構光感測器

摘要

隨著科技的進步,無人機的應用蓬勃發 展,尤其是嵌入式系統微型化、處理器運算能 力大增與影像識別演算法的突破,再加上3D 列印等新製造技術的進步,大幅降低機械件設 計的門檻,使得原本只能限於軍事用途的感測 系統,出現了許多民用無人機可使用的設備。 以目前的技術水平而言,新世代無人機的載具 平台開發,屬於高投入成本、高驗證期的資本 密集領域,台灣因為在機械製造、電子電機、 半導體製造等領域具備優勢,更適合將研發 的資源投入無人機的應用領域,以期在無人機 市場的藍海中取得先機。

壹、前言

無人機(Unmanned Aerial Vehicle, UAV)一般又稱作為drone,單純的無人機

結合其他的周邊設備就成為一套功能完整的 無人機系統(Unmanned Aircraft System, UAS)。近些年間,新興的科技領域如: 工業4.0、大數據、IOT物聯網(Internet of things)等新技術,目標都聚焦在產業的加 值能力提升、生產效率提高,但是傳統的工 業產品仍有規模經濟的限制,而且彈性生產 制度、大量的感測器及自動化機械、資料探 勘與數據分析等相關的軟硬體投資金額高, 因此目前仍然還在摸索試探與醞釀的階段。 另一方面,因為空拍機成本的降低、消費型 無人機市場的飽和,無人機製造商無不磨拳 擦掌,等著在新興的行業裡開疆闢地,依照 「創新雙螺旋」的理論,技術的進步與創新 的應用是推動進步的雙駕馬車,部分工業 4.0、自動化、IOT物聯網、大數據相關新技 術,非常適合在商用無人機的領域找到合適 的應用場景。以目前常見的無人機農業噴 灑為例:隨著農村的老年化,接手的年輕農 夫,如果還要靠人力噴灑農藥,可能已經很 難找到合適的勞動力,無人機可能是改變台 灣農村的重要工具。另外像是高樓設施檢 測、高壓電塔檢驗清洗、太陽能板、風力發 雷設備這些任務,如果還用傳統的方式由人 員冒生命危險爬到高處執行任務,既花費過 多人力成本、成本效率又無法提升。無人 機的出現,對於所謂的3D工作(dirty, dull, dangerous)而言無疑是個福音。使用無人機 取代人力執行3D工作,不僅提升了工作效 率,而且讓操作人員的風險降至最低。

本文將繼續從無人機系統的分類、酬載 的簡介及應用趨勢分析等面向,為大家介紹 無人機系統。

貳、無人機系統

依照飛行載具的形式,我們可以約略分 為3類:

1. 定翼型無人機:

定翼型無人機的優勢在於續航時間長、 飛行效率高、載重能力強、飛行穩定性高, 當需要執行長航程長滯空的任務時,定翼型 無人機將會是較佳的選擇,但是缺點是對場 地有較大的需求。定翼型起飛需要跑道、助 跑或感測器彈射輔助裝備,而載具降落必須 採跑道滑行、掛繩、回收網或是降落傘的方 式回收,限制了它的應用範圍。

2. 直昇機型無人機:

直昇機型無人機的優勢在於可以垂直起 降,對起降環境要求不大,故地形適應力 強,且相對於多旋翼型無人機有更好的抗風 能力,其缺點是機械結構複雜、技術門檻 高、維護成本相對較高。

3.多旋翼型無人機:

與直昇機型無人機一樣對起降環境要求 不大,目相對於直昇機型無人機結構較簡 單,技術門檻較低、維護容易,缺點是續航 力不足,適合進行短距離小範圍的任務。

4.其他混合型無人機:

混和型無人機結合了定翼型及直昇機型 無人機的優點,既可在原地進行垂直起降, 又能像一般固定翼飛機般在空中飛行。典型 的混和型無人機系統配備旋翼系統,垂直起 降時運作原理跟一般多軸無人機無異;當 機體飛升至一定高度後,便切換至固定翼模 式,實現水平飛行。

另外還有一些特別的無人機,像是模仿 鳥類的撲翼機,因為離商業化較遠,所以本 文就不多做介紹。

一般而言定翼型無人機具有容易控制、 抗風性強的優勢,但是旋翼型或直昇機型的 無人機,可以在特定地點懸停(hover)、又不 需要起降的跑道。混和型無人機,結合定翼 型和旋翼型兩者的優點,既可垂直起降、自 動懸停、又可以像固定翼無人機高速飛行, 我們預期這類混和型的無人機有可能會是下 一代無人機的主流。如何選擇合適的飛行 載具,要視運用場景和環境的屬性來決定。

介紹完無人機系統的類型後,我們將概 略的說明無人機系統的5個關鍵模組:

1.無人機載具:

載具系統就是指無人機本身(UAV), 是無人機系統中最重要也最基本系統,可以 粗略分為載具結構、電力系統、飛行控制系 統、導航系統、推進系統。

2.酬載 (payload) 裝備:

泛指安裝在無人機(UAV)載具上,用來執行任務的額外裝備,根據任務的需求而有不同的設備,例如光達、紅外線等各類感測設備,或是農藥噴灑裝置、攝影雲台等皆屬於酬載裝備。

3. 遙導控設備:

其用途讓操作者透過無線電訊號,遠端 操控無人機,一般商用無人機常用的無線頻 譜主要有2.4 G及5.8 GHz(Wifi頻段),其 中2.4 GHz波長較長,訊號傳輸距離較遠, 5.8 GHz波長較短,傳輸距離較近,惟共用的 裝置較少,干擾較為輕微。除了2.4 G、5.8 GHz的遙導控設備,還有少數無人機使用72 Hz或者900 MHz(UHF)的頻率來做為數據傳 輸或者影像傳輸。其他頻率的通訊裝備,則 必須和NCC(中華民國國家通訊傳播委員會) 申請才能夠合法使用。

4.地面導控站:

地面導控站為無人機任務之控制中心, 利用遙導控設備,傳送無線訊號,就可以對 無人機發出命令,例如控制攝影機光圈、鏡 頭方向及影像放大縮小等動作,讓載具上之 攝影機可以鎖定追蹤的目標;另外,導控站 也可以接收來自無人機上的即時狀態,包含 飛機姿態、位置及相關大氣數據資料。較複 雜的地面導控站,除了接收載具資料、控制 酬載外,一般同時也具備自動任務規劃、即 時資料處理能力,甚至有些還會具備飛行模 擬、影像拼貼、資料比對、或者與遠端資料 庫連接進階功能。

5.地面支援裝備:

指支援無人機執行任務的裝備,包含協助起飛裝置、回收用的設備(如攔截網)、發電機、精準定位RTK(Real Time Kinematic即時動態技術)地面接收站,以及用於維修、保養的各類工具。

其中酬載決定了無人機的應用範圍,所 以本文主要著重於酬載相關技術介紹。

參、各種酬載的簡介

本章將介紹EO/IR(可見光/紅外線酬載)、Lidar(光達)、超音波傳感器、多光譜 感測器、立體視覺感測器、飛時測距(TOF) 及結構光等六大類常見的酬載。

1.EO/IR(可見光/紅外線酬載):

EO/IR是無人機最重要的酬載(如圖 1),它主要是由光學的EO(可見光酬載)和

圖 1 EO/IR (KOLEAD 的 Star SAFIRE III)

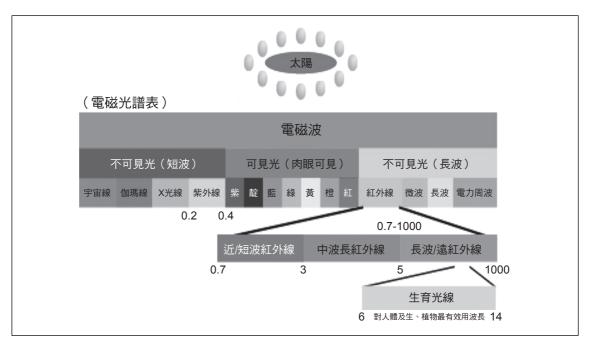


圖 2 頻率與應用

表 1 不同紅外線比較

	近紅外線 (NIR/IR-A DIN)	短波長紅外線 (SWIR/IR-B DIN)	中波長紅外線 (MWIR/IR-C DIN)	長波紅外線 (LWIR/IR-C DIN)
波長	0.7-1.0 μm	1.0-3 μm	3-5 μm	8-15 μm
應用	夜視設備	遠距離通訊	紅外線追熱導向 飛彈技術	熱成像

IR(紅外線酬載)組合而成,我們先從IR開 始,再回頭介紹EO及EO/IR的相關模組。

(1) IR感測器原理與應用:

IR(Infrared,紅外線),是一種非可見 光,室溫下物體所發出的熱輻射多在此波 段,波長介於微波和可見光之間(如圖2)。 紅外線在不同材質物體上的反射與吸收方式 不同於一般可見光,紅外線對部分材料甚至 擁有穿透能力,因此透過紅外線感光設備與 紅外線濾鏡進行拍攝,輸出的畫面對比強 烈,可以看到某些可見光無法呈現的細部

資訊。

紅外線因不同波段,可以概略分類為: 近紅外線、短波長紅外線、中長波紅外線、 長波紅外線。每一種波段都有特殊的用涂, 例如近紅外線(0.7-1.0 μm)被運用於夜視設 備;短波長紅外線(1.0-3 μm)被用來作為通 訊;中長波紅外線(3-5 μm)是用在熱導向飛 彈技術; 而最廣泛被應用於工業領域的熱成 像儀則使用長波紅外線(LWIR),如表1和圖 3所示。[1]

IR感測器它是一種能量偵測器,在我

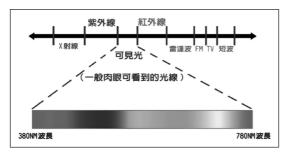


圖 3 紅外線頻率分布

圖 4 可見光和紅外熱成像比較

們生活的環境中,只要溫度高於絕對零度 (-273°C)的物體,都能輻射紅外線能量。

因為不同物體甚至同一物體不同部位對 紅外線的反射強弱不同,利用各部分的輻射 起伏及差異,從而能顯示出景物的特徵,如 圖4。

IR感測器運用的範圍十分廣泛,包含火 災現場偵測/監控、農林調查、以及重要設備 檢測。以目前政府主推的綠能產業來說,IR 感測器可以用來檢測太陽能板及風力發電機的 葉片。檢測太陽能板時,利用IR感測器偵測 光電板的熱斑,出現的熱斑代表模組內有局部 異常。造成局部異常的有許多不同的原因,例 如電池正負極之間絕緣不良導致短路、局部電 路損壞、輕微髒污、焊接不良等因素。我們利 用紅外線熱圖像來找尋這些熱斑,提早發現 潛在的危險,即時對模組進行修復或更換,

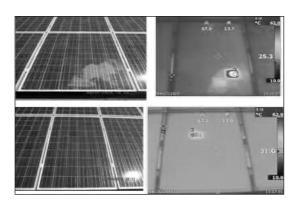


圖 5 太陽能板熱斑成像圖

以維持較高的發電效率,如圖5。

風力發電機的葉片高懸於100公尺的半空 中,而離岸風力發電廠又位於海洋中,要執 行缺陷檢測相對也困難。一般結構常用的非 破壞性檢測方式有螢光滲透顯影、射線、渦 電流檢測等技術,但其過程過於複雜,所需 檢測設備不適合裝載於無人機上。目前比較 簡單的檢測方法,是利用無人機搭載高倍率 的高速光學攝影機(EO),從遠方拍攝轉動 中的葉片,並且將運轉的音頻錄下來,再透 過影像處理的技術分析每一幀(frame)是否 有明顯的裂紋,同步交叉比對聲紋資料用來 確認異常的情況。但是可見光的檢測方法, 準確度相較於非破壞性檢驗方法來的差,若 改使用IR感測器偵測可以找到深度大於0.5吋 的裂紋。另外最新的技術還有超音波熱成像 技術,該技術利用超音波作用在不同位置不 同材質的結構上,促使材料或結構內部產生 機械振動,使其缺陷部位(裂紋或者是複材 層的脫膠現象)因熱彈效應和滯後效應,導 致聲能衰減而釋放出熱能,最終引起材料局 部溫度升高,這對於複合材料的淺層分層等 的檢測非常有效,目前超音波熱成像技術主 要應用於發動機的檢測上,未來也可能運用

在葉片的檢測。

紅外線技術若結合3D感測技術,衍生的 酬載有飛行時間感測器(TOF)、結構光等設 備,後面會再介紹。為了避免讀者混淆,本 小節中的IR就純粹指被動式紅外線感測器。

(2) EO (Electro Optics電子光學) 感測器 的原理與應用:

EO(電子光學感測器)是利用光學結合 電子技術成像,精準清晰的成像就是EO技術 的關鍵。市面上常見的光學攝影機,就是最 簡單的EO。在電子光學儀器中,若入射的光 電子束被限制在離軸很近的範圍內,軌跡與 軸的交角很小時(即滿足近軸近似條件smallangle approximation),所形成的像是理想像 或稱高斯像。但是實際的光線軌跡不可能完 全滿足近軸條件,因此實際形成的像總是和 理想高斯像有一定的差異,這種區別稱為像 差(Optical aberration),光學鏡組的像差決 定成像品質的優劣。[2, 3]運用透鏡組合、鏡 片研磨、改善鏡片品質、鍍膜等技術,可以 解决各式各樣的像差現象,達到精準成像的 目的。

EO影像感測器 (Image Sensor) 可以分為 CCD及CMOS兩大類。CCD(Charge Coupled Device感光耦合元件),為可記錄光線變化的 半導體,主要採用交錯式掃描的方式處理影 像;而CMOS(Complementary Metal-Oxide Semiconductor互補型氧化金屬半導體)與 CCD雖然同為記錄光線變化的半導體,但是 CMOS影像感測器採用非交錯式或循序掃描 的方式處理影像。

CMOS感測器中每個畫素都包含了放大 器與A/D轉換電路,多的額外設備壓縮單一 畫素的感光區域的表面積,因此在相同畫

表 2 CCD和CMOS比較表

	功耗	影像雜訊	影像動態 範圍	感測器 製造成本
CCD	中至高	較低	高	高
CMOS	低至中	較高	中至高	低

素、同樣大小之感光器尺寸,CMOS的感光 度通常會低於CCD, CMOS 感測器的雜訊也 會比CCD嚴重。CCD感測器在靈敏度、解析 度、雜訊控制等方面都優於CMOS感測器, 而CMOS感測器則有低成本、低功耗、及高 整合度特點(如表2)。不過隨著CMOS感測 器在降噪技術的進步,兩者差異有逐漸縮小 的趨勢。

(3) 完整的EO/IR模組

一套完整的EO/IR模組包含光學鏡組、 影像感測器(Image Sensor)、穩定環架及 控制與補償迴路等重要的部分。影像感測器 (Image Sensor) 就是我們之前提過的EO模 組和IR感測器模組,但是如果沒有穩定環架 (gimbal), 航行過程的震動將會嚴重影響成 效品質。入門級的酬載可能只具備簡單的機 械式避震機構(如橡膠墊、彈簧),但是中高 階的EO/IR會使用到三軸的穩定環架及快速 反應的步進馬達。

穩定環架(gimbal) 又被稱為雲台或穩 定器,是一個具有樞紐的機械裝置,以單一 軸穩定來說,他可以讓物體繞單一軸的旋 轉。一組功能完整的穩定環架由三個gimbals 組成,任一個穩定環架都和其他環架呈現正 交的關係。三軸的gimbal使物體可以隨時和 地平線保持固定的姿態,而不會受到載具震 動、轉向的影響。陀螺儀(gyroscope)正是 一個運用Gimbal裝置最佳例子,如圖6所示,

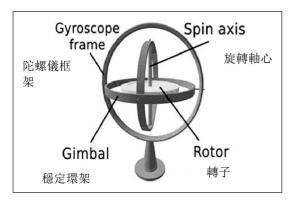


圖6 陀螺儀

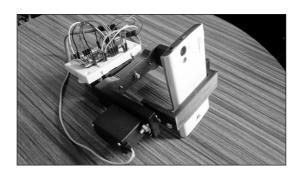


圖 7 用 Arduino 實作穩定環架

中間有一根豎軸,穿過一個金屬圓盤。金屬 圓盤稱為轉子,豎軸稱為旋轉軸。轉子用金 屬製成,是了增加質量,從而提高其慣性。 豎軸外側三層重疊的圓環,它們相互交叉, 帶來了三個方向自由度的旋轉。

持續旋轉的轉子,因為角動量守恆的緣 故,讓物體可以抗拒載具方向改變,維持原 來的姿態。

而無人機會在空間中劇烈的運動,因此 需要有快速反應的gimbal系統,讓酬載維持 在原來的位置,反應速度就決定了穩定環架 的成本。不同於陀螺儀, EO/IR上的穩定環 境是透過加速規等感測器偵測到系統的運動 後,利用步進馬達控制環架旋轉到正確的位 置。圖7是利用Arduino搭配三軸加速規和馬

達實作出穩定環架的範例。

2. Lidar(光達)/Li-Fi(光通訊)

Lidar一般稱為光學雷達或簡稱為光達 (light detection and ranging, LIDAR), 是一 種光學的感測技術,它會主動通過向目標點 發射一束光線(通常是脈衝雷射),並且接 收反射的訊號,利用發射和反射訊號的差異 得到深度的資訊。光達技術廣泛的被運用在 地貌測繪、農林業、國土探勘任務,甚至也 可以運用在特殊的大氣物理領域。以前Lidar 是非常昂貴的高價設備,目前因為汽車自動 駕駛科技的蓬勃發展,出現了許多入門版的 光達,如圖8所示,美國Luminar公司利用光 達偵測馬路上的行人。[4]

(1) 光達的工作原理:

光達對物體距離的測量方式和雷達量測 的方式類似,都是主動發射訊號,然後比對 發送和接收訊號的差異來計算物體的距離。 光達所發射的光束可依照使用目的,選擇不 同的波段,如紫外光、可見光或近紅外光 等,可以進行包含地表、岩石、水氣、風場 及化學分子等特性之量測,依照光達的載 具,還可以可區分為衛星載光達、空載光 達、車載光達、船載光達以及地面光達等。

圖 8 光達輸出影像

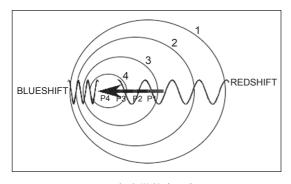


圖 9 都卜勒效應示意圖

光達屬於主動式的感測技術,它們會發 射訊號進行主動式的探測,訊號撞擊物體 後,反射訊號經過檢測和運算之後可以得到 深度/距離相關的資訊,通過記錄發射和背 散射脈波之間的時間並利用都卜勒效應計 算行進距離,來確定物體的深度資訊(如圖 9)。再利用掃瞄的機制,可以得到一個特 定區域的深度資訊。雷射光測距儀(Laser rangefinder)就是一種主動式的測距儀,它 使用雷射傳輸器發射雷射光,並且利用接收 器來測量反射訊號,光達可以視為一個加強 版的雷射測距儀。

光達掃瞄的方式可以概略區分成機械 式和非機械式兩大類。傳統利用機械馬達 的方式驅動,模組的體積及單價都居高不 下,新的方式透過非機械結構,利用MEMS (Microelectromechanical Systems微機電,縮 寫為MEMS)的機構設計方法改變折射率及 光線的方向達成光束掃瞄的目的,非機械式 掃瞄的光達設備具備有體積和成本的優勢。

本小節所指的光達,主要指的是能量級 別比較高的「雷射光達」, Apple公司也把用 在iPhone上的結構光感測器叫做光達,這是 屬於能量級別比較低的感測器,我們會放在 後面的章節介紹。本文的介紹以概念性簡介 為主,具有同樣名字的設備,性能差異可能 非常大,所以若要進一步了解無人機酬載, 還是需要仔細了解該設備的細部規格才能確 定它的性能及適用的場景。

(2)光達的應用:

利用光達產生深度資訊,可以描繪精準 的地形地貌,或者可以作為躲開障礙物的避 讓設備(See and Avoid)。例如在近距離檢查 橋樑或者其他重要設備時,使用光達可以避 免載具撞上固定的物體。

另外一種比較不普及,但是未來也許有 機會應用在無人機上的技術:Li-Fi光通訊技 術(Light Fidelity), Li-Fi使用LED作為通 訊的訊號發射源,具備有節能和低熱量的優 勢,在一般手機通訊的市場這個優勢並不明 顯,所以難以推廣,但是無人機的通訊中繼 的用途上就有可能派上用場。Li-Fi可以應用 在載具間的傳輸,辦公室或開刀房的室內傳 輸(避免電磁干擾的問題),或者特殊的保密 傳輸用途上。如圖10所示, Li-Fi 使用可見光

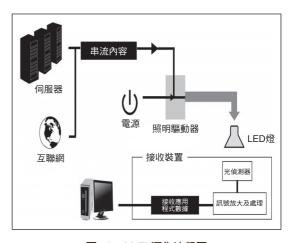


圖 10 Li-Fi 運作流程圖

	Li-Fi	Wi-Fi
運作	利用 LED	利用終端數據機
數據傳輸速度	>1 Gbps	Wifi 4.0 理論值 為 600 Mbps
安全性	高	普通
設備成本	高	低
能量消耗	較少	較多

表 3 Li-Fi 和 Wi-Fi 比較

通訊(Visual light communication, VLC),只要光源可及的地方,我們都可透過Li-Fi連接網絡。光通訊的數據傳輸速度高達1 Gbps,較Wi-Fi快。WiFi和Lifi的比較參考表3。

可見光無法穿透牆壁,限制了Li-Fi的覆蓋範圍,但反之也得到了傳輸資訊更加安全的優點,可以避免通訊被駭客(hacker)入侵。Li-Fi也許並不適合常規的通訊網路上,但是在無人機執行勘災的任務上,應用Li-Fi作為長時間通訊中繼的技術,也是另一種可行的備援選項。

3.超音波傳感器

(1)超音波的工作原理:

超音波(Ultrasonic)是指任何聲波或震動的頻率,高於一般人類可以聽到的最高頻率(20kHz)的訊號。傳感器發出超音波訊號,訊號以音速前進,根據接收器接到反射訊號的時間差可推算出距離。由於空氣中的超音波訊號會隨著頻率和濕度的增高而增加衰減率,因此超音波傳感器一般都被應用於短距離的偵測用途。

(2)超音波傳感器應用:

超音波的用途很廣,從工業上的焊接、 鑽孔、粉碎、清洗、乳化,到醫療檢驗、非 破壞檢測、水文探勘、魚群偵測等相關用 途。超音波亦可作為無人機輔助降落的重要 設備,就像是汽車利用倒車雷達(使用超音 波技術)輔助停車。透過超音波設備,可以 檢測無人機底部與著陸區域的距離,判定著 陸點是否安全,然後緩慢下降到著陸區域。 超音波傳感器和雷射測距儀都可以用來測距 離,但是超音波比較適合用來執行距離較 短、運動速度比較慢的場景。儘管精準的 GPS模組(如常見的精準定位RTK模組)、氣 壓高度計、雷達高度計、地貌比對和視覺辨 識技術都可以輔助降落,考量感測器成本/技 術成熟度,超音波傳感模組是小型無人機中 最經濟的感測器(網路上即可找到200元台幣 以內的超音波傳感器)。大多數直昇機和旋 翼式無人機多具備懸停功能,主要用於捕捉 目標的連續性鏡頭、或者在固定高度執行特 定任務,透過超音波傳感器和相關的導航設 備,可以有助於將無人機在低空中保持在穩 定高度。

超音波傳感器除了做為降落輔助、懸停用途外,無人機避讓(See and Avoid)功能也是很重要的應用。避讓功能作為如圖11所

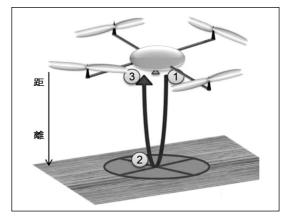


圖 11 超音波避讓原理

示,無人機在飛行過程中從點1的超音波傳送 器發出訊號,超音波到達點2撞到物體反射, 於點3被超聲波感測器接收,通過超音波傳感 器持續收集周邊環境的障礙物,並將資訊回 饋給飛控電腦調整飛行軌跡,進而達到避讓 的作用,當操作者弄錯方向,要把無人機往 障礙物前進,飛控電腦將發出警報聲或者忽 略指令。以往一些人為疏忽造成的撞擊,現 在都能可以透過低成本的超音波傳感器搭配 飛控電腦的自動防護機制去避免這些操作的 疏失,既保障了無人機飛行安全,也避免了 對周圍人員/財產的損害,讓操作人員可以把 注意力聚焦在任務上。

超音波在無人機上還有其他特別的應 用,像是超音波的風速計,可以用來探測特 定區域的風場,作為空速計的替代性方案。 傳統的空速管量測總壓和靜壓推算出飛行速 度,需要具備有一定的速度才能夠正確的量 得到數值,在室內或緩慢移動的場景中,就 很難得到正確的風速,這時候超音波風速計 就可以派上用場。

超音波在非破壞性檢測(NDT)的領域常 被用來檢測的裂紋,但是目前在無人機搭載 超音波檢測裂紋仍在實驗開發階段,例如: 美國Sandia國家實驗室正在開發結合爬行機 器人與無人機的風力發電機葉片檢測系統。 目前技術比較成熟的檢驗方式,是利用高速 攝影機(EO)拍攝照片後回傳至地面站做影 像處理,或是利用紅外線感測器檢測外部裂 紋或破損。未來如果感測器整合及訊號處理 的技術有所突破,就會出現可執行超音波或 其他搭載非破壞性檢驗酬載的特殊無人機。

4. 多光譜感測器

(1)多光譜的工作原理:

自然界的太陽光是由不同波長的輻射組 合而成的連續光譜,一般人眼可以感受到的 波段稱為可見光,除了可見光之外,還有一 些光線是人眼感受不到的,例如波長比可見 光還短的v射線、X射線、紫外線,以及波長 比可見光還要長的紅外線、熱紅外線、無線 電波等,這些光線通稱為輻射線。人的眼睛 能看到不同顏色的可見光就是因波長差異而 呈現出色彩變化。由於不同物體,在接受到 太陽光照射時,物體表面吸收與反射太陽光 的比例也不盡相同。多光譜感測器的概念, 就是利用不同物體在連續光譜中具備不同特 徵值的特性,蒐集特定幾種頻率的訊息,用 來作為分析之用。

(2)多光譜感測器的應用:

以農業用途為例,植物的光譜反射曲線 會呈現出其獨特的性質,植物富含的葉綠素 除了會反射較多的綠色光外,它對於近紅外 線有很強的反射效應,反射強度與植物的種 類及健康狀況有關,利用這個特性常被用來 進行森林或植被的分析。通過觀測與分析作 物反射不同波段光譜的情況,可以對農作物 的生長狀況有更精準的了解。

所以多光譜相機可以擷取特定波長的信 息數據,再將這些特定波長數據經過影像處 理後得到整合性的訊息。

目前常見的多光譜相機(或者成像儀)主 要分為如下幾種方式:

- I. 光束分離型的多光譜相機,它採用一 個鏡頭拍攝景物,用多個三稜鏡分光 器將來自景物的光線分離為若干波段 的光束,用多套圖像系統分別將各波 段的光信息記錄下來。
- II. 多相機型的多光譜照相機,它是由幾 台照相機組合而成,各台相機的鏡頭

上分別帶上不同的濾光片,分別接收 景物的不同光譜帶上的信息,同時拍 攝同一景物以獲取一套特定光譜帶的 圖像信息

III. 多鏡頭型的多光譜照相機,它具有4-9個鏡頭,每個鏡頭各有一個濾光片,分別讓一種較窄的光譜通過,多個鏡頭同時拍攝同一景物,用一張膠片同時記錄不同光譜的圖像信息。其中最廣為人所知的是大疆公司(DJI)所推出Phantom上所搭載的多光譜相機(圖12),由一個可見光鏡頭和五個不同波段的多光譜鏡頭組成。

有了多光譜相機收集到的原始數據(raw data),如何將這些數據轉換成所需的資料,以適合於各個應用的領域中,就是最關鍵部分。以農業中最具代表性的歸一化植被指數NDVI(Normalized Difference Vegetation Index)為例,因植被在紅光波段吸收強,近紅外線反射強,通過計算紅光波段反射值與近紅外線波段反射值之差比上兩者之和,即可得到NDVI指數。通過NDVI指數分析植被的葉綠體含量,可以用來判斷植被的健康狀況。(如圖13)

歸一化差異紅色邊緣指數NDRE(Normalized Difference Red Edge Index),跟NDVI指數類似,也可以用來判斷植物的狀況,NDRE把NDVI中的紅光換成了紅色邊緣的光線(紅光到近紅外線NIR過渡帶中的一個區域)。除了常見的NDVI、NDRE,還有LCI、OSAVI、GNDVI、SIPI2、MCARI等指數,針對特定的應用領域,使用者亦可以參考相關論文重新組合成專屬的指數,去滿足

圖 12 DJI Phantom 的多光譜相機

圖 13 通過 NDVI 指數監控植物生長狀況

特定的應用領域。

5. 立體視覺感測器

(1)立體視覺感測器的工作原理:

立體視覺演算法(Stereo Vision)是基於 視差(parallax)的原理,由三角法定位原理 得到物體的深度資訊。如圖14所示,利用兩 個安裝於不同位置的攝像機的圖像平面和物 體P之間構成一個三角形,兩個攝像機之間的 位置關係是已知的,因此就可以透過幾何的

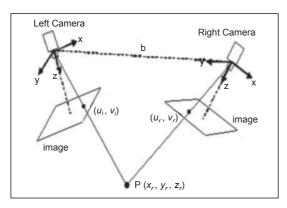


圖 14 立體視覺幾何光學

圖 15 MIT 的實驗結果

關係推算出物體P的坐標。

立體視覺感測器又叫做立體攝影機,其 中左邊攝影機的成像面上的任意一點只要能 在右攝影機成像面上找到對應的匹配點,就 完全可以確定該點的三維坐標。這種方法是 點對點的運算,只要平面上所有點,在左右 兩台攝影機都存在相對應的匹配點,就可以 代入方程式中進而解析出對應的三維坐標。 目前若要純粹基於立體攝影機要達成自動飛 行目標,因為環境的複雜度、光照條件以及 大量運算的遲延效應的影響,仍有許多限 制,因此目前適合在速度緩慢、室內飛行的 場景,如果未來演算法及硬體運算技術突破 的,讓無人機可以快速計算出不同的環境景 深,並且比對其他感測器的資訊,將可規劃 出最佳的飛行航道。

(2)立體攝影機的應用:

目前立體攝影機主要被應用在3D相機/攝 影機、人臉識別、行人偵測、VR/AR穿戴式 裝置及機器人的用途。在無人機領域也可以 做為避讓的設備,例如麻省理工學院(MIT) 研發出建基於簡單的硬體平台,就能讓無人

機執行即時偵測、分析障礙物、迴避,以便 安全穿過樹林,而相關硬體設備的成本只要 1,700美元。它的原理在於利用兩套高速攝影 機獲取飛行前方10公尺範圍的環境資訊,透 過立體視覺演算法建立起飛行四周的完整地 圖,規劃出迴避障礙物的航道,它的好處是 的光學攝影機屬於無人機的標準配備,因此 不需要額外安裝光雷之類的重型裝置,也不 用預先建立起整個環境地圖,單靠立體攝影 機就可以獨自飛越有障礙物的複雜環境,該 技術將可大幅增加運用無人機的彈性。如圖 15所示,紅色是障礙物,綠色是預定航道, 無人機一邊飛行,一邊更新障礙物的資訊並 同步修正飛行的航道。

6. 飛時測距(TOF)及結構光

(1)飛時測距(TOF)及結構光工作原理

飛行時間測距(TOF, Time of Flight, 飛 行時間測距法,又稱為飛時測距)。立體視覺 演算法、飛行時間測距(TOF)和結構光三種 技術,是目前智能可攜式裝置中三大主流3D 感測技術,相對於傳統的RGB彩色攝影機/相 機,只能得到2D的資訊,3D感測技術多了深

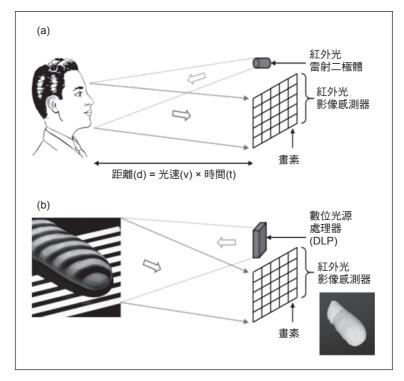


圖 16 TOF 與結構光作用原理

度的資訊,將可提高辨識的精準度。其中立 體視覺演算法使用的是可見光, 飛時測距和 結構光使用的是非可見光(通常是紅外線), 這三大主流的3D感測技術不會發出傷害人視 力的光束,適合有人員存在的場景。

TOF(飛時測距),利用紅外線產生深度 資訊的傳感器,能夠產生高精度的3D成像。 這種成像技術通過向目標發射連續的特定波 長的紅外光線脈衝,由於光速已知,通過傳 感器接收待測物體傳回的光信號,計算光線 往返的飛行時間或相位差,利用簡單的數學 公式就可以得到待測物體的距離(深度)資 訊,如圖16(a)所示。

結構光傳感器(Structured light)又被稱 呼TrueDepth傳感器:利用雷射二極體(LD,

Laser Diode)或數位光源處理器(DLP, Digital Light Processor) 投射出特殊的IR光線 圖形(例如:點、單線、多線、單圓、同心 圓),經由物體不同深度或位置,反射回來會 造成反射圖案紋路的改變。例如:投射出直 線條紋光線到手指上,由於手指是立體圓弧 形,光線反射回來變成圓弧形條紋,進入紅 外線影像感測器後就可以利用圓弧形條紋反 推手指的立體結構,如圖16(b)。[5]

(2)飛時測距(TOF)及結構光的應用

結構光技術和TOF非常類似,但是兩者 關注的重點不太一樣:TOF聚焦反射的時 間找出深度的資訊,而結構光需要投影出 特定樣式的紅外線,用來重建物體的立體

結構。TOF及結構光是由幾個模組化的硬 體所組成的,其中關鍵模組是能發出紅外 線的垂直腔面發射雷射器VSCEL(Vertical-CavitySurface-Emitting Laser),它能以相 對較小功率發射信號,硬體上容易實現。結 構光相對於TOF具備有更精細的定位能力, 但是不太一樣有著幾個難以突破的限制,例 如參照點不能太多(因為太密將無法拍出距 離),相關的傳感器設計也比較複雜,而且 結構光的鏡頭拍攝的圖像需要系統的額外運 算比對才能識別,因此大幅增加了處理器的 負擔、延長了辨識時間。

目前結構光的產品主要是由Apple公司所 領導的供應鏈,主要用在對於安全性更高的 量測場景,例如人臉識別,而TOF的傳感器 主要是由ADI公司大力推廣,主打於一般化 的場景;目前因為功率的限制兩者偵測的距 離都不遠(一般而言偵測距離小於2公尺,主 要用於手機及智能可攜式裝置中)。或許未 來還可能出現可以兼具精準度和成本的新架 構,能夠融合TOF及結構光兩者的優點。

肆、目前應用趨勢的方向

一、精準農業

負責執行農藥噴灑的植保機,發展歷史 悠久,像是日本的山葉公司(YAMAHA)早 在30年前就已經開發出RMAX植保機,以因 應農村老年化的問題,中國大陸也跟進得很 快,目前在淘寶網頁上就可以找到各式各樣 的植保機。相形之下,我國的發展算較晚。 根據統計,我國目前90%以上的植保機械是 手動背負式噴霧器,農友所使用的產品是單 管噴霧劑、壓縮式噴霧器、背負式噴霧器等 傳統的產品,預估目前農村裡保有一億台以 上的各種手動噴霧器,這些老舊設備難以精 準控制農藥的劑量及霧化方式。因為人工無 法準確控制噴灑的結果,農夫習慣將整株植 物噴的濕潤,但是即便大量噴灑農藥,也未 必能確保藥劑可以覆蓋到葉子的背面。設計 良好的植保機可以透過氣流擾動的方式,讓 葉子的背面更容易的被藥劑覆蓋,所以能夠 落實農藥的安全劑量。依照目前的資料研 判,植保機具備現代化、智能化、節能化的 優勢,預期需求將會穩定成長。

目前國內已有多家業者及法人投入開發 農藥噴灑無人機,包括經緯航太、亞拓、雷 虎科技、工研院等單位。高負載、高續航力 的植保機,是很優異的載台,更換酬載模組 後還可以應用於救災、農林巡檢等任務。

二、物流運輸

中國的京東公司於2016年公開宣布該公 司的無人機已經獲得了四省的飛行許可,勘 測超過10條可行的航線,並且保證這些航 線在配送過程中的安全無虞,各大物流公司 (包含最早起步的亞馬遜Prime Air送貨無人 機)都把無人機視為解決廣大地區的配送問 題的重要工具,並且希望結合物流運輸後台 的技術、大數據分析等等工具,讓配送變得 更加智能化[6]。

若有相關公司要投入無人機物流運輸的 領域,必須要向民航局等相關部門申請特別 的批准。以目前來說,無人機運用於物流運 輸除了載具開發之外,最關鍵的部分還是在 於如何有效的管理機隊、運營無人機配送系

專題報導

統,並且和整個物流運籌系統結合。物流運 輸是一切經濟活動的關鍵技術,決定了商品 流動的方向,也主導了金流和資訊流方向, 目前像是沃爾瑪、亞馬遜公司都不斷的在無 人機物流運輸的專利領域佈局,甚至將觸角 也延伸至住宅監視、災防警報等領域,可見 得若是誰掌握物流的優勢,就獲得了一個足 以撼動市場的支點。

目前眾多網際網路電商、外賣平台都將 無人配送視為「未來物流」戰略的重要一 步。但是,業界尚未有一致的方向,有的公 司是走無人機方向,有的公司嘗試無人車或 者外賣機器人,如何妥善的整合這些載具, 仍是這場「物流最後一哩路」戰爭的挑戰。

臺灣因為地狹人稠、空域繁忙,受限於 先天環境的限制,要學習美國發展無人機物 流的策略,確實有所不足。目前國內除了幾 次實驗性質的載具試驗之外,尚未有業者投 入無人機配送的營運測試,鄰近的日本、南 韓、中國都有不少指標性的業者已經投入類 似沙盒測試的實驗中,我國在這方面的投入 顯得相當不足。如果公務部門在離島運輸、 地質脆弱的偏遠山區,規劃例行的物流運 輸、通訊傳輸及地貌監控營運路徑,策略性 的引導廠商投入相關研發領域,可以讓我們 在這個新世代的技術革命中不缺席,並且有 機會和國際物流大廠進行戰略性的聯盟。

三、災後緊急涌訊

臺灣是個地震、颱風頻仍的區域,偏遠 的山區常在豪雨之後道路中斷、基地台毀 損,就陷入孤島狀態,這是臺灣社會必須面 對的考驗。因為有救災的需求,中華電信與 雷虎科技合作,開發出結合無人機的4G/5G 的行動通訊台,建立「空中的基地台」,可 滿足緊急救難通訊需求。例如在颱風、地震 後,災害破壞了通信設備便可以運用此系統 快速為災區提供僅局通訊服務,使災區可 與外界作連結,協助救災指揮中心能掌握 實際災情。該系統中所使用的雷虎CX-180 ICEMAN同軸雙旋翼無人機,屬於通用型無 人機,搭載噴灑設備可以作為農噴植保機、 掛載災防探測裝備則可作為勘災之用。該款 無人機亦可改裝成繫留方式執行非試任務, 透過其他支援的車輛(如衛星車)提供源源 不絕的電力,允許無人機執行長時間的救災 任務。[7]在無人機通訊的領域,近期則有 Alphabet(Google母公司)旗下的Loon無人 機公司和軟銀合作開發的高空太陽能無人機 Sunglider,目前該機已經可以在平流層提供 地面LTE連線,未來相關研究成果可能納入 國際涌訊標準。

如同無人機的物流運輸,如果我們的公 務部門能例行性的勘測固定航線,並且保證 這些航線安全無虞,平常的演練就可以確保 災難發生的當下,除了可以用最短的時間部 署相關災防體制,也可以讓我們在新世代的 通訊技術爭霸戰中和國際接軌。

四、娛樂

無人機的燈光秀,為娛樂領域帶來新的 亮點。目前在國內外的大型的慶典中,無人 機的飛行表演似乎成了標準配備。2018年平 昌的冬季奧林匹亞運動會開幕式上,Intel以 1218架Shooting Star無人機照亮夜空,之後無

人機就變成了慶典的「常客」。相信未來結合 相關的場景規劃、影像製作、音樂、舞蹈、 傳統煙火及光電顯示技術,會更讓表演藝術 的更加豐富。

五、探勘/檢驗/警政公務/其他

還有很多特殊應用領域,也是適合無人 機發展的領域,比如像是:

- 1. 土地測繪:公務部門所需要的土地測繪資 料,可以利用EO/IR、光達執行完成相關 地形地貌建模。
- 2. 石油/礦產探勘:油田/礦產區域的地理測 繪、管道規劃,都可以由無人機來執行。 結合視覺化及資料探勘(data mining)的技 術,讓使用者可以更直觀的獲得關鍵資訊。
- 3. 工業巡檢監控:使用無人機代替人工作業進 行石化管線巡檢、高空裝置檢查、電塔基座 檢查、風力發電機巡檢、油庫安全巡查等。
- 4. 建築工程:透過無人機隨時掌握工地營造 進度,監控/警戒工地周遭情況(例如部署 於檔土牆、山坡地、上游河川附近執行監 控,如果有問題立刻警告施工單位),另 外像是歷史古蹟的建模任務,也可以使用 無人機。
- 5. 警政用途:呼叫特定地點起飛的無人機, 可以讓警用無人機比第一線警察或快打部 隊更快的抵達治安事件的所在地,代替公 權力執行現場偵察或者嚇阻犯罪。自動化 的無人機可實現書夜監控、跟蹤鎖定等功

能,有效彌補人力巡檢方式的不足,降低 基層員警的負荷。目前臺南市和新北市的 警察局都已經設置警察無人機隊,預計未 來其他縣市政府也會陸續跟進。

- 6. 消防用涂:無人機可穿透濃煙實施探查及 並且用IR監控火場溫度,巡查尋找現場的 火源;另外可以掛載氣體探測系統,即時 探測是否有危險氣體洩漏並鎖定來源,涌 知消防人員迅速採取處置措施。
- 7. 橋樑等重要設備的巡檢:相比於人工巡 檢,或者是造價高昂的橋樑檢測車,無 人機巡檢的優勢十分明顯-無人機機動靈 活、操作便捷、能搭載多種感測器適應不 同應用場景。不僅能克服路程遙遠、路況 複雜、人員難以到達等困難, 蒐集的資料 (如可見光、紅外光、以及其他重要資 訊),經過後處理後可以建立起橋樑及重 要設備3D模型,讓研究人員可以利用大數 據等相關資料科學的技術,為設備執行全 方面的檢查。

伍、結論

民用的無人機從最初的玩具/模型市場 開始發展,後來因為科技的進步,無人機系 統將從單純的空拍任務,朝向商業租賃、營 運服務、廠區安全防護等領域延伸,從而在 經濟活動及社會發展中,產生更深入而廣泛 的影響,蓬勃的需求將拉動無人機產業的發 展,並活絡產業鏈的發展。

目前無人機在行業應用領域仍然處於持 續探索的初步階段,市場成熟度及產業聚落

專 題 報 導

仍有待提升。得益於自動駕駛及無人車技術 的不斷進步,無人機的技術領域也雨露均 霑。從技術層面來看,除了各式各樣的酬載 將擴大無人機的應用之外,個人認為電池技 術還有加值服務架構(類似data as a service 資料即時服務的概念,衍生成亞馬遜公司提 出的surveillance as a service的概念)有可能 是下一世代的發展趨勢。未來新的電池技術 (如:燃料電池、空氣電池或者超級電容) 進步,讓無人機的續航力大幅提昇時,就可 能讓無人機更加的普及化。當無人機數量的 急遽擴展後,應該如何妥善的管理無人機隊 就成為當務之急。像是亞馬遜、Intel等公司 投入無人機技術的同時,也同時開發相對的 機隊管理的系統,這類的系統程式有部分功 能會與無人機航管系統類似(無人機航管系 統, UAV Traffic Management, UTM, 如圖 17所示),必須同時兼顧營運效率與飛行風險 的管控。從發展的趨勢來看,無人機的加值 服務、系統化的解決方案相對於硬體設計或 製造,是利潤更高的市場,但是面對系統整 合及法令規章的困難度也越高,並非一般中 小企業可以投入的領域,必須要由經濟部等

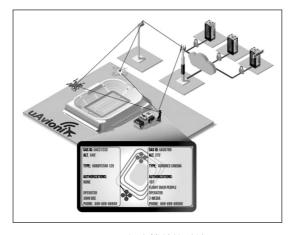


圖 17 無人機航管系統

公部門結合產/官/學的力量,並且將視野拉高 到國際市場才能推動。

能夠解決生活/工作中所遭遇的問題,就 是無人機最好的應用領域,本篇所介紹的, 主要是無人機的基本應用領域為主,希望能 夠發揮拋磚引玉的效果,促使讀者發想出創 新的運用方式。無人機系統是個很強大的平 台,但是仍須要找到合適的應用場景,才能 發揮平台的功能。

未來如果讀者有心想要更深入瞭解無人 機應用領域的最新發展,可以關注物流無人 機以及亞馬遜、Intel、facebook、沃爾瑪、 樂天等這些長期在無人機領域默默佈局的國 際公司的最新動態,另外也可以搜尋專利資 料庫,這些方法都有助於掌握無人機產業最 新的動態趨勢。

參考文獻

- 1. Brick 公司 IR 簡介 https://www.brickcom.com.tw/news/ press-release detailview.php?id=269
- 2. 維基百科 電子光學 https://zh.wikipedia.org/zh-tw/% E9%9B%BB%E5%AD%90%E5%85%89%E5%AD%
- 3. 張宜仁、周家復 物理雙月刊 NO.39 2017 年 8 月第四 期 https://www.ps-taiwan.org/Bimonth/article detail acc.php?classify=p1&cid=67
- 4. 維基百科 光學雷達 https://zh.wikipedia.org/zh-tw/% E5%85%89%E5%AD%B8%E9%9B%B7%E9%81%9
- 5. STOCKFEEL 網路文章 2019/01/02. https://www.stock feel.com.tw/3d%E6%84%9F%E6%B8%AC-%E9%A3 %9B%E6%99%82%E6%B8%AC%E8%B7%9D-tof/
- 6. 康顧嚴 工業雜誌 399 期 夢想起飛 無人機時代來臨
- 7. 中華電信攜手雷虎科技,打造無人機空中基地台解決 方案 2019/08/16. https://technews.tw/2019/08/16/chtuas/