

大型抗颱半潛式離岸風力機平台開發

財團法人船舶暨海洋產業研發中心處長/鍾承憲 財團法人船舶暨海洋產業研發中心執行長/周顯光 財團法人船舶暨海洋產業研發中心副組長/黃政彰 財團法人船舶暨海洋產業研發中心工程師/吳彥威

關鍵字:離岸風電、浮動式風力機、繫泊系統、耦合分析

摘要

本文以搭載10 MW離岸風力機之浮動 平台為設計目標,假設以臺灣西部海域水深 50 m以上區域為場址,根據穩度要求設計平 台幾何,並對繫泊配置進行擬靜態分析,以 不同纜繩直徑與加重塊進行比較,先進行浮 動平台與繫泊系統的非耦合分析,假設平台 運動只受環境負荷影響,而不受繫纜張力影 響;之後在動態時域下考慮相同的環境條件 使用耦合系統執行3小時動態分析,整理系 統的極端動態響應結果,如浮體運動和繫泊 張力,並將非耦合和耦合分析的結果進行比 較與探討,最後於國立成功大學水工試驗進 行1/70水槽模型試驗以驗證設計之可行性, 針對浮式平台結構的運動反應和自由運動衰 減情況進行探討與實驗,其中藉由建立浮式 平台模型與相關儀器設備,進行自由運動衰 減、規則波及非規則波的試驗,量測項目為 浮式平台之運動行為與繫纜繩張力,並包含 分析反應振幅運算子(Response Amplitude Operator, RAO)分析及非則波下之運動性能 探討。

一、前言

根據全球風能協會(Global Wind Energy Council, GWEC)統計[1],2019 年全球離 岸風電新增裝置容量達 6.1 GW,佔總體新 增裝置容量10%,創下歷史新高,離岸風電 總裝置亦達到29 GW;2019年新增量前三名 為中國(2.4GW,占比為 38.37%)、英國 (1.8GW,占比為28.7%)及德國(1.1 GW, 占比為 18.08%),全球離岸風力市場裝置

圖 1 2015~2019 全球離岸風力市場裝置容量分佈 [1]

容量分佈,如圖1所示。其中亞洲區域風能 發展新增裝置容量為2.5 GW,佔全球新增量 39%,東南亞將是未來發展重點區域,越南與 泰國未來市場框架與政策發展頗值得關注。

目前離岸風力發電系統開發皆在50米內 淺水區以底著式(bottom founded)的基礎結 構,由於淺水區的離岸風電開發岸場容易與其 他海洋開發用途相競合(如漁業、航運等), 可開發的近岸淺水區域日益飽和,因此目標裝 設範圍擴展至深水區域(50米~200米)成為 各國下一階段離岸風電開發推動重點。

在美國、中國大陸、日本、挪威等國 家,深水區域蘊藏相當豐富的風能潛能,隨 著風場水深越深和離岸距離越大,對於風機 的功率與規格要求 也越來越高,以目前固 定式基礎結構技術,大於50米以上之水深 區域,其水下基礎的成本以及施工難度將隨 著水深增加,因此,浮式離岸風電概念隨之 而生,浮式離岸風電係指安裝在浮動結構上 之離岸風力發電系統,可在深水區域裝置離 岸風力機,離岸風電先進國家紛紛開始積極 投入深水區的浮式離岸風電相關技術研發, 浮式風力發電系統有機會成為解決方案,擴 大離岸風電的裝設範圍、提高風力發電量, GWEC預測至2030年[2],浮式離岸風電將全 面商業化,其全球裝置容量將達6.2 GW, 且WIND Europe的報告中也評估[3],依照目 前的浮式離岸風電發展速度與進程,預估到 2030年時,浮式離岸風電的均化成本將落於 80-100歐元/MWh之間,已相當接近2017年度 固定型離岸風電均化成本65歐元/MWh。可 見浮式離岸風電在2030年前後將有機會成為 大規模商業開發之標的,可預期浮式風電產 業崛起,全球爭相進場卡位。

國內政府規劃離岸風電採「先示範、次 潛力、後區塊」三階段開發政策;第一階段 示範獎勵及第二階段潛力場址分別獲得初步 成果,預計於2025年累計設置量達5.7 GW, 並持續規劃第三階段區塊開發政策,自2026 年至2035年間將年年釋出1GW容量,以10 年10 GW規模賡續推動,在政府積極推動發 展離岸風電下,開發區域勢必將涵蓋至50米 水深以上區域。國際先進在浮式風電部署上 亦尚在前期示範階段,國內與其技術差距尚

圖 2 假設目標場址與資料浮標位置示意圖

低,若能提前投入浮式風電之研發、設計、 製造和安裝上之需求,將可使國內產業及早 準備,為後續國內產業切入、提升國產化比 例奠下良好基礎。因此,本計畫預計建立浮 式平台設計分析技術,期能為2028年後示範 風場設置目標貢獻一力。

二、場址條件選用

本研究考量臺灣海峽特性,假設目標場 址位於新竹外海,離岸約3.5-4公里,位於西 部海域之觀測浮標,如圖1所示。綜合參考 1997-2018總共11年之中央氣象局新竹浮標 實測海況,併與美國國家海洋暨大氣總署模 擬數據(National Oceanic and Atmospheric Administration,NOAA)全球海況資料庫之 環境數據[4]進行統計回歸分析,推估水深約 50-100 m之新竹外海目標場址,作為研究浮 動平台設計及性能評估之依據。期望建立10 MW級以上之浮式風機平台,故選擇平台場址 水深為60 m,海氣象條件則參考表1、表2、 表3。風速、波浪及海流等環境條件回歸值。 並取95%信心度之50年回歸統計極值作為代 表依據,亦即,最大示性波高HS = 12.72 m, 對應之尖峰週期Tp = 11.8s;海流極值取 1.59 m/s,至於風速極值依信度95%回歸計

表1 目標場址風速極值回歸值

回歸期(年)	1	10	50
$V_{130} ({ m m/s})$	36.94	44.96	49.64
195% (m/s)	35.91	42.48	45.81
u95% (m/s)	37.97	47.44	53.47 (57.0)

表 2 目標場址 浪高、週期 極值 統計回歸值

回歸期(年)	1	10	50
$H_{1/3}(m)$	5.48	9.01	11.02
195% (m/s)	5.02	7.91	9.32
u95% (m/s)	5.94	10.11	12.72
H _{1/3} (u95%) 對應 T _p (s)	8.89	10.77	11.80

表3 目標場址海流極值統計回歸值

回歸期(年)	1	10	50
海流流速 (m/s)	1.37	1.46	1.53
195% (m/s)	1.35	1.42	1.47
u95% (m/s)	1.39	1.50	1.59

算應為53.47 m/s,但考量臺灣特殊之颱風條件,故而本研究擬參照IEC-61400規範Class T 之57 m/s作為風速極值[5]。

三、浮式平台構型設計與性能評估

現行市面上商轉風機詳細規格在商業機 密考量下並不易取得,部份研究機構如美國 國家可再生能源實驗室(National Renewable Energy Laboratory, NREL)及IEA國際能源 署(International Energy Agency, IEA)等嘗 試參考商轉風機開發研究用風機規格,並公

表 4 DTU 10MW 參考風機規格 [6]

型號	DTU 10MW
風機等級	IEC Class 1A
風機轉向 / 型式	順時轉,上風式
額定功率	10 MW
葉片數量	3
葉片尺寸	178.3
啟動風速 / 額定風速 / 停機風速	4 m/s, 11.4 m/s, 25 m/s
最大尖速比	90 m/s
輪毂尺寸	5.6 m
輪毂高度	119 m
葉片重量	228,962 kg
機艙重量	446,036 kg
塔架重量	628,422 kg

開其資訊作為開發研究之用,本研究使用丹 麥技術大學提供之DTU 10 MW風機作為設計 平台之參考風機[6],如表4所示。

平台構型設計以半潛式為主,透過環境 條件、初始設計限制及性能評估,訂定設計 標準。初始設計平台吃水為20 m,乾舷設定 為15米,亦即平台總深度(Depth)為35米, 配合臺灣製造施工場址條件,平台全寬以不 超過85 m為原則。圖2概念構型以環狀箱型浮 筒(P1, P2, P3)應具備一定高度,並提昇其 對平台三個頂點垂直圓柱(C1, C2, C3)之支 撐力,以求盡量降減小型支撐柱(brace)之 數量甚或完全避免,吃水(T)為20 m固定, 分別調整浮筒平台高度(H)、垂直圓柱直 徑(D)以及圓柱至平台中心(o)的距離 (L)之尺寸。

圖 3 概念浮動平台構型佈置示意圖

表5透過計算浮力穩度分析,得出定傾高 GMT、GML需大於1.0 m,而風機引致最大 靜傾角(運轉最大推力下的傾角)需控制在 10度以下。為了滿足設計吃水之需求,平台 整體含風機、塔柱的重量必須等於平台設計 吃水下之總排水量,總排水量扣除預估平台 鋼構重量以及風機、塔架重量之外的差值, 則需透過適當的壓艙水配置來完成,其中三 個箱型浮筒(P1, P2, P3)除了預留10%予 內部結構佔用之外,剩餘空間全數填充壓艙 水;另為了平衡風機、塔柱安裝於圓柱C1所 造成的平台整體重心偏移,故而C2, C3二圓

表 5	浮動平台主要尺寸與壓艙重量配置
-----	-----------------

名稱	尺寸	單位
圓柱至平台中心距離 (L)	40	m
圓柱直徑 (D)	12.5	m
浮筒平台高度 (H)	7	m
圓柱高度 (C1-C3)	35	m
吃水 (T)	20	m
排水量	19403	Tons
鋼材重	3831.7	Tons
浮筒壓載	10641.3	Tons
圓柱壓載 (C1)	338.3	Tons
圓柱壓載 (C2)	1643.3	Tons
圓柱壓載 (C3)	1643.3	Tons
GMT/GML	8.62	m
静傾角	8.09	deg

柱內必須先配置與風機、塔架同等重量之壓 艙水,若有剩餘再平均分配至平台三角形頂 點之三個直立圓柱(C1,C2,C3)內。而浮動 平台本身具有的抵抗傾側(Heeling)、翻覆 (Moment)與外力,並回復到原來正浮位置 之傾側能力,考慮平台受轉子推力作用產生 之傾斜伴隨著角速度之變化,透過動穩度計 算,求得平台受風作用下完整動穩度曲線, 平台傾角下扶正力矩的面積,參照DNVGL規 範建議至少需等於或大於風傾側力矩曲線下 的1.4倍。

四、浮式平台繫泊系統設計與擬靜態評估

浮動式風力機之繫泊系統的目的是將浮 動平台依設計位置保持在規定的範圍內,以

圖 4 Orcaflex 繫泊系統建模示意圖

使電纜或鄰近的風機不受損壞,並為浮動平 台提供一定的穩定性。

浮動式風力機之繫泊系統選定以Orcina OrcaFlex[7]進行參數分析,見圖4為該軟體 為海事工程與繫纜專業設計軟體。參考國 際浮動式風力機安裝範例,繫纜資料選用 國際繫纜廠商Vryhof型錄,錨鍊公稱直徑為 142/147/152 mm,加重塊(clump)從繫纜 著地點(touchdown point)往後每2 m間隔設 置,每條錨鍊共有42個加重塊,加重塊重量為 1~9 ton的沒水重量,以經驗公式計算50年回 歸週期之風波流負荷下並檢核繫纜受力狀況。 分析結果主要比較係數如表6及表7所 列,首先為繫纜張力之安全係數,以ABS所 用之1.67為基準[8],則需使用公稱直徑147 mm以上的錨鍊;在錨碇抬升角條件,以使用 最常見之拖錨(drag anchor)情形,應不可

表6 安全係數分析結果

直徑 加重塊 (ton)	142 (mm)	147 (mm)	152 (mm)
1	1.63	1.71	1.80
3	1.62	1.71	1.80
5	1.62	1.71	1.80
7	1.62	1.71	1.79
9	1.62	1.70	1.79

表7 位移量

直徑 加重塊 (ton)	142 (mm)	147 (mm)	152 (mm)
1	20.88	20.25	19.56
3	17.12	16.58	15.72
5	13.05	12.31	11.60
7	12.13	11.52	11.01
9	11.65	11.12	10.31

表8 浮動式風力機繫纜系統初步選定資料

參數	單位	值
繫纜型式	-	懸鍊
繫纜材料	-	R3 Studless Chain
斷裂強度	KN	15536
錨鍊數	-	3
水深	m	60
公稱直徑	mm	147
單位重量	Kg/m	432
锚碇點距浮體 中心水平距離	m	534
繫纜長度	m	550
繫纜預張力	KN	1537
繫纜初始剛性	KN/m	1179

產生錨碇抬升角(zero uplift angle),並衡量 錨鍊與加重塊剩餘海床上的部分,盡可能不 過度設計,加重塊較佳規格為5 ton,最後為 浮動平台位移量,與後續海纜設計選定進行 評估;最後整理浮動式風力機初步選定資料 見表 8所列。

浮動平台與繫泊系統非耦合分析假設平 台運動只受環境負荷影響,而不受繫纜張力 影響,此時繫纜也只隨著平台運動改變張

表9 環境條件計算列表

	風速 (m/s)	Hs (m)	流速 (m/s)
Case1	57.0	11.8	1.59
Case2	47.44	10.77	1.50
Case3	37.97	8.89	1.39

表 10 繫纜最大張力分析結果

	非耦合 (KN)	耦合 (KN)	誤差
Case1	9384	11080	15.3%
Case2	8010	9113	12.1%
Case3	5719	6299	9.2%

表 11 平台最大水平位移分析結果

	非耦合 (m)	耦合 (m)	誤差
Case1	12.20	13.60	10.50%
Case2	10.33	11.33	8.86%
Case3	7.17	7.65	6.21%

力。對於此時平台可使用頻域分析,節省大 量計算時間,可在初步設計時使用。但在頻 域分析中,運動方程式被線性化,意味著 在阻力負荷、時變繫纜形狀、波浪表面高 程和繫纜恢復力等非線性影響方面存在不 准確性。考慮完整之動態效應,本研究使用 OrcaFlex進行分析,可使用非耦合分析與時 域耦合分析方法模擬繫纜系統張力與平台運 動並進行比較,如表9所列;分別依回歸週期 50/10/1年計算。分別為繫纜張力和平台位移 分析結果,顯示非耦合分析會低估受力與運 動響應,且當環境條件越嚴苛,非線性效應 越顯著,最大誤差達15.3%。

		Hs (m)	Vw (m/s)	Vc (m/s)	錯位
	50 年	12.72	57.0	1.59	0
Case1	風	12.08	57.0	1.27	+-15
Case2	波	12.72	54.2	1.27	+-15
Case3	流	9.54	42.8	1.57	0,45

表 12 耦合動態時域分析之風波流條件

圖 5 繫纜系統優化設計

圖 6 Orcaflex 斷纜分析示意圖

接著以初步選定設計資料進行極限環境 條件下耦合動態時域分析,環境條件以50 年回歸週期為主,但考慮風波流不會同時發 生50年狀況,參考 API-RP-2MET Annex H TableH.7[9],設定表12作為分析條件。

以3小時進行耦合動態分析錨鍊直徑設計 評估,因市面上錨鍊直徑較大的規格較少, 只有特定廠家可以訂製,因此可改用錨鍊並 聯來分擔負荷,如以3×2繫纜配置的方式,如 圖5所示。3×2配置除了分擔負荷以外,也包

表 13 3×2 繫纜直徑 117 mm 耦合動態時域分析結果

	最大 張力 (KN)	安全 係數	錨仰 角度 (deg)	躺海床 長度 (m)	預張力 (KN)	橫搖 (m)
完整	6302	1.95	0.35	195.4	1750	12.8
斷一條	11180	1.06	0.24	170.0	2701	14.9

表 14 浮動式風力機繫纜系統選定資料

參數	單位	3×2 117 mm
繫纜型式		懸鍊(Cantenary)
繫纜材料		R3 Studless Chain
錨鍊數		3
水深	m	60
公稱直徑	mm	117
斷裂強度	KN	10547
單位重量	kg/m	274
锚碇點距浮體 中心水平距離	m	534
繫纜長度	m	565
繫纜預張力	KN	1750
繫纜初始剛性	KN/m	651

含了繫纜冗餘度。對3×1的配置方式而言, 任何一條繫纜斷裂皆會使系統失效,因此安 全係數需為 2.0;在有繫纜冗餘度的配置下, 完整系統的安全係數規範只需達 1.67,但必 須多計算任一條繫纜斷裂下,安全係數仍有 1.05。3×2繫纜配置之耦合動態分析,如圖 6及表13所列,ABS可滿足繫纜強度要求。 最後整理浮動式風力機初步選定資料見表14 所列。

五、縮尺模型規格

為了確保此設計之可行性及適用性,透 過水槽試驗針對開發場址之海氣象條件測 試。將對浮式平台進行縮尺模型試驗,模型 試驗中,需致力於建構精確縮尺模型,以確 保原尺寸於時頻域的力學反應,減少縮尺過 程中失真現象,並利用數值分析交叉比對驗 證,作為後續導引業界投入實海域驗證機組 和測試機化之基礎。參考Maine大學在2015年 發佈 VolturnUS 1:8實海域模型試驗,與其他 文獻皆以福祿數(Fr)原理為縮尺依據,確 認幾何形狀、尺寸規格與實體構型相似,藉 以確保物理參數之準確性。因考量風、波、 流項目及成大實驗場域之限制,故本計畫縮 尺比例為 1/70之模型進行水槽實驗。

模型重心量測方式採用重量量測法,以 磅秤量測模型三處之重量,再以靜力平衡計 算重心位置,其中垂直方向(Z)之重心量 測方式採用傾角量測法,將模型傾斜至某角 度,並且量測重量之變化進一步計算垂直方 向(Z)之重心位置,如圖7所示。

以Bifilar pendulum方法求得慣性矩,首 先需知L懸掛長度,r懸掛點與重心之距離, 以及M為懸掛物之質量,藉由量測g重力加速 度與擺動之週期T得知模型慣性矩量測。而量 測結果之懸掛長度L為530 mm,懸掛點與重 心距離r為300 mm,分別量測三個方向之擺 動週期進一步計算慣性矩,量測結果分別為

圖 7 重心計算示意圖 [10]

圖 8 模型製作完成品

Ixx = 5.92 kg-m²、Iyy = 4.84 kg-m²以及Izz = 10.54 kg-m²。故本計畫縮尺比與福祿數推估 相同,詳細參數及模型製作,如圖8及表15所 示。在實驗前會對平台調整平台進行壓載調 配和量測其重量、重心與空氣中轉動慣量。

	全尺寸	1/70 縮尺
重量 (kg)	18097000	51.67
吃水 (m)	20	0.2875
X 方向重心位置 (m)	-2.9	-0.0384
Y方向重心位置(m)	0	0
Z 方向重心位置 (m)	5.43	0.073
慣性 I _{xx} (kg-m ²)	1.03e10	5.92
慣性 I _{yy} (kg-m ²)	8.01e9	4.84
慣性 Izz(kg-m ²)	1.69e10	10.54

表 15 平台實體與模型尺寸

表 16 縮尺風機比例與物理參數關係

項目	比例	全尺寸	1/70 縮尺
功率	$\lambda^{3.5}$	10 MW	3.48 W
機艙重量	λ^3	446,036 kg	1.30 kg
塔架长度	λ	115.63 m	1.65 m
塔架重量	λ^3	628,400 kg	1.83 kg

表 17 試驗水槽繫纜系統尺寸

參數	單位	Line 1	Line 2 & 3
水深	cm 85.7		5.7
公稱直徑	mm	3.0	3.5
單位重量	kg/m	0.127	0.158
繫纜長度	m	7.2	3.6
加重塊重量	kg/pcs	0.146	0.62

圖 10 試驗水槽繫纜配置平面圖

因受限於試驗水槽寬度7 m,在兩個側柱 的繫纜長度會縮短,相對調整繫纜重量,使 錨繫系統的回復力仍符合模型定律,錨繫系 統縮尺模型見圖10及表17所示。

六、實驗規劃與量測項目

本計畫Delta Float 10 MW浮式平台水槽 縮尺模型試驗於國立成功大學水工試驗所執

圖 9 縮尺風機及塔架

風機部分選擇DTU 10 MW參考風機模型 之規格,建立質量塊的方式計算重量與質心 進行縮尺與設計製作,其模型包含4顆馬達 (Motor)、陀螺儀(Gyro)、荷重元(Load cell)與鋁合金骨架,如所示。為了實現DTU 10 MW參考風機之動態響應於縮尺浮動平 台,產生對應於風機氣動力載重之推力與彎 矩,根據陀螺儀回授風機的速度、加速度與 姿態,即時更新受水動力影響後的的氣動力 載重,實現氣動力與水動力耦合之水槽縮尺 試驗平台,縮尺模型比例,如表 16所示。

行[11],針對浮式平台的運動及繫纜張力試 驗進行探討與實驗,藉由浮式平台模型、縮 尺繫纜系統與相關儀器設備,進行回復力、 自由運動衰減、規則波試驗與不規則波試 驗,進而量測浮式平台之運動行為與繫纜繩 張力。圖11為水槽長60 m、寬7 m、深1.2 m 可同時造風、造波與造流,水槽長度方向為 造波與造流方向,造風機方向則可依照實驗 需求進行調整。

試驗將量測浮式平台之運動行為與繫纜 繩張力進行探討與分析,為量測平台運動狀態 於試驗平台上方架設陀螺儀,同時觀察不同試 驗條件下之姿態變化,並搭配影像處理來分析 平台之動態軌跡運動情形;繫纜繩張力則透過 於繫纜繩中架設張力計進行量測。量測項目依 試次內容不同分為以下四個部分:

(一)平台靜態強制位移

為確認縮尺模型繫纜回復力與全尺寸平

圖 11 先進新型風波流水槽

表 18 強制位移試次表

靜態強制位移測試				
靜態強制縱移 (m)	靜態強制橫移 (m)			
-10	-10			
-5	-5			
-2.5	-2.5			
2.5	2.5			
5	5			
10	10			

台設計需求一致,將對縱移(surge)與橫移 (sway)兩個方向各進行6組的強制位移,量 測平台在單一自由度的強制位移下之繫纜回 復力(Restoring Force),表18為模擬實尺寸 之強制位移試次表。

(二)自由運動衰減試驗

對平台施加一個自由度方向初始位移 後,使其自由擺動至穩定狀態,平台分 為有無繫纜狀態,無繫纜平台進行起伏 (heave)、橫搖(roll)、俯仰(pitch)三個 自由度,有繫纜平台進行六個自由度試驗, 試次如表19所試,記錄其時序列變化去推估 實尺寸平台之運動自然週期與阻尼比。

(三) 規則波中平台運動反應量測

有繫纜狀態之平台進行2組浪向、7組 規則波的造波試驗(表20),波高固定3.5公 尺、週期由7秒至20秒變化,量測平台六自由 度運動時序列及繫纜張力,並透過時序列計 算平台RAO。

表 19 自由衰減試次

	自由衰減測試初始位移				
	Free Hull	Moored Hull			
縱移	-	7.5 m			
橫移	-	7.5 m			
起伏	2.5 m	2.5 m			
縱搖	5°	5°			
橫搖	5°	5°			
偏轉	-	5°			

表 20 規則波試次表

規則波測試				
М	loored Hull			
· 沈 泊 古 (0)	180			
波瓜方向()	90			
波浪振幅 (m)	3.5			
	7			
	10			
	12			
週期 (s)	14			
	16			
	18			
	20			

(四) 不規則波中平台運動反應量測

有繫纜狀態之平台進行2組浪向(180°、 90°)、5組海況試驗(表21),環境條件組合 分為純波、風+波、風+波+流,不規則波採 用Jonswap波譜,γ=3.3,其中sea state 2,3 之波高、週期為本研究目標海域一年回歸週 期之極限波高與週期,sea state 4,5之波高、 週期為本研究目標海域五十年回歸週期之極 限波高與週期特徵波高H。=12.72公尺,尖峰 波週期T_p = 11.8秒,極限風速V_w = 11.5公尺/ 秒,與目標海域之回歸縮尺之極限海流流速 V_c = 1.59公尺/秒,將量測非規則環境下平台 六個自由度運動、繫纜張力,並透過運動時 序列計算計算平台運動時序列推算平台在不 規則海況環境下之運動與繫纜張力反應之統 計值。

七、實驗結果探討與數值比對

(一)自由運動衰減試驗

以實驗整機組平台各別一組初始位置進 行6個自由度之自由運動衰減試驗,分析並 計算6個自由度之自然週期。其中,無繫纜 繩試驗包含:Heave、Roll、Pitch之測量; 有繫纜繩試次包含:Surge、Sway、Heave、 Roll、Pitch、Yaw。透過分析軟體 OrcaFlex 及ANSYS AQWA,比對整體平台自由衰減 時序列結果,由Ocraflex的結果來看,起伏 實驗遞減速率一致,振幅較慢於數值結果, 反之橫搖速率較快;其振幅大小與數值差不 多,如圖12所示。為了求得整機組平台運動 之自然頻率,將自由運動衰減時序列進一步

圖 12 自由衰減時序列實驗及分析比對結果

不規則波測試				
Sea State	Hs (m)	Tp (s)	Wind (m/s)	Current (m/s)
1	4	7.3	-	-
2	5.94	8.89	-	-
3	5.94	8.89	11.5	-
4	12.72	11.8	11.5	1.59
5	12.72	11.8	5.70	1.59

表 21 非規則波試次表

表 22 🕴	無繫纜之	整體自	然週期	誤差
--------	------	-----	-----	----

	Heave	Roll	Pitch
1/70 Model	2.63	4.12	4.32
Full Model	22	34.51	36.2
數值計算	21.70	33.80	34.30
誤差	1.3%	2.0%	5.2%

	Surge	Sway	Heave	Roll	Pitch	Yaw
1/70 Model	20.9	19.39	2.567	3.88	4.066	16.22
Full Model	174.86	162.23	31.48	32.46	34.02	135.71
數值 計算	182.04	176.12	21.8	33.7	34.2	142.47
誤差	4.1%	8.75%	1.4%	3.8%	0.4%	4.98%

表 23 有繫纜之整體自然週期誤差

作快速傅立葉轉換(Fast Fourier transform, FFT)分析,可求得該自由度在頻率域上的 振幅,一般定義振幅峰值所對應的頻率極為 自然頻率/自然週期,比對無繫纜之整體自週 週期結果,誤差在5.2%以內,而有繫纜之整 體自週週期之最大為 8.75%,從實驗及數值 比對結果,排除模型公差問題,兩者誤差都 在合理的範圍之內,如表 22及表 23所示。

該試驗透過給予整機平台設計之Surge與 Sway初始位移距離,進行各6組實驗強制位 移,分別在180度及90度方向波浪下配置, 測量相對應之3條繫纜繩張力值,以呈現平 台在強制位移下之繫纜繩回復力、分析回復 力曲線之特性。首先初始實際配置長度為 500 m,因場地限制line2及line 3之場度回推 實際長度為255.5 m, OrcaFlex模擬靜態強制 最大移動之情況,如圖13所示。由模擬結果 與實際情況來看明顯有所誤差,進而尋找原 因,發現試驗場地限制及繫纜配重塊配重無 法拉緊,經有計算得知繫纜長度誤差1%,藉 由模擬分析,將原設計500 m修正至505 m, 從 Surge 方向看line 1及line 2更為貼切實際 狀況,而Sway方向偏移正負10 m時,長度為 505 m之line 1及line 2模擬的結果更貼切實際 現象,如圖14及圖15所示。

(三)規則波中平台運動反應(RAO)量測

反應振幅運算子(response amplitude operator, RAO)為一工程統計值,常用於評

圖 14 Surge 方向 line 1 與 line 2 之強制位移

估船體或浮式結構物於海上的動態反應。在 入射波浪為規則波時,RAO可定義為其與入 射波的振幅比值[12]

$$RAO = \frac{z_a}{\delta_a}$$

圖16及圖17分別為Heave和Pitch在180度 方向不同週期規則波作用下RAO試驗結果與 模擬比對。Heave RAO隨週期提高而漸增, 主要是平台Heave時候,自然週期大約接近 20秒的位置,接近共振點而提高振幅。然而 Pitch自然週期大約在36秒,因實驗量測平台 搖晃角度偏小不明顯,故運動變化不大。而 90度方向平台擺設位置不是對稱則有Roll變 化,其數值模擬分析與實驗結果趨勢大至相 同,像Pitch隨週期提高而漸增,大約34秒位

圖 15 Sway 方向 line 1 與 line 2 之強制位移

圖 16 波向 180 度 Heave 運動 RAO 比對

置產生共振點,如圖18~圖20所示。綜合2組 數值分析及實驗比對結果,得知Roll和Pitch 量測範圍遠低於自然週期,運動反應不明 顯,量測數據較小,但平台運動反應RAO趨 勢兩者都一致,符合設計目標。

圖 17 波向 180 度 Pitch 運動 RAO 比對

圖 18 波向 90 度 Heave 運動 RAO 比對

(四) 非規則波中平台運動反應量測

實際波並非單一特性波浪,其海洋波浪 變化極為不規則,而頻率、振幅、波長、方 向皆不斷變化,不同時間所觀察之情況也不 相同。假設浮動平台對波浪之反應為線性, 且海洋波與浮動平台之反應可視為穩定且平 均值為零之正規隨機過程(stationary normal random process with zero mean),則在實海域 受不規則波作用之浮動平台,其運動之頻率 反應頻譜SR(ω),其中HR(ω)為船體在單 位規則波中的轉換函數(transfer function), 或稱為反應振幅運算子(Response Amplitude Operator, RAO); S(ω)為波浪頻譜。

 $(\omega) = |(\omega)|^2 \cdot S(\omega)$

以Sea State5極端條件狀況五十年回歸 期之示性波HS = 12.72 m,對應之尖峰週期 Tp = 11.8s;分別考量風速57 m/s下之平台 運動反應,一般而言,規則波中之運動反應 RAO在接近自然週期附近可以看到相當明顯 的運動反應,但計算極限海況之尖峰週期Tp 與平台之自然週期有一定的距離,故非規則 波下之運動反應除起伏(heave)稍為明顯變 化,如圖21所示。然而橫搖(roll)與縱搖 (pitch)之反應特徵值在180與90度波向下均 不到2度,且同樣因為計算海況之主要波浪週 期(11.8秒)與平台之自然週期較遠,從數 值及實驗趨勢比對來看大致相同,如圖22及 圖23所示。

圖 20 波向 90 度 Roll 運動 RAO 比對

八、結論

本研究設計搭載10 MW離岸風力機之 浮動式平台與繫泊系統,假設以臺灣西部海

圖 23 極端條件下之平台縱搖運動特徵值

域水深50 m以上區域為場址,依新竹浮標 資料與國際海況資料庫NOAA進行統計回歸 分析,計算風波流條件作為繫纜分析之設計 值。平台構型設計考量環境條件、初始設計 限制、穩度與運動性能評估,設計為浮筒和 圓柱組成之半潛式平台。在繫纜設計方面, 首先以擬靜態分析,比較不同錨鍊直徑與加 重塊,依國際規範之安全係數與成本考量選 定繫續系統參數,便進行浮動平台與繫泊系 統的非耦合與耦合分析,在非耦合分析下, 非線性效應被忽略,耦合分析會低估繫纜張 力與浮動式平台位移量,目當環境條件越嚴 苛,非線性效應越顯著,最後規劃水槽模型 試驗以驗證設計之可行性,透過自由運動衰 减、規則波與不規則坡之試驗,並量測浮式 平台之運動行為進行驗證比對,計算海況之 主要波浪週期與平台Roll與Pitch之自然週期 較遠,因此搖晃的運動反應較小,並從實驗 數據與模擬的結果可得知平台運動反應符合 設計趨勢,完成大型抗颱半潛式離岸風力機 平台開發設計。

參考文獻

- 1. Global Wind Energy Council(GWEC), Global Wind Report 2019.
- Global Wind Energy Council(GWEC), 'Offshore wind will surge to over 234 GW by 2030, led by Asia-Pacific', August, 2020
- 3. WIND Europe, 'FLOATING OFFSHORE WIND ENERGY A POLICY BLUEPRINT FOR EUROPE', October 2018.
- 4. BUCHMAN, Michael F. NOAA screening quick reference tables. 1999.
- 5. IEC, IEC 61400–1, Wind Energy Generation Systems. 20190.
- BAK, Christian, et al. The DTU 10-MW reference wind turbine. In: Danish wind power research 2013. 2013.
- Orcina Ltd, 'OrcaFlex user manual: OrcaFlex version 11.0f'. Daltongate Ulverston Cumbria, UK, 2020.
- 8. ABS, Guide for building and classing floating offshore wind turbine, 2020.
- SANTALA, Markku J. API RP-2MET Metocean 2nd edition; Updates to the Gulf of Mexico regional annex. In: Offshore Technology Conference. OTC, 2018.
- E. Kassarian, F. Sanfedino, D. Alazard, H. Evain, J. Montel, "Modeling and stability of balloon-borne gondolas with coupled endulum-torsion dynamics", Preprint submitted to Aerospace Science and Technology, 2021.
- 11. 財團法人船舶暨海洋產業研發中心,「新及再生能源 前瞻技術掃描評估及研發推動—12MW級風機抗颱 浮式平台與錨繫設計及評估創新前瞻計畫」,中華民 國111年。
- J Journée, J. M. J., and J. A. Pinkster. Ship Hydromechanics. Delft University of Technology, 2001, 70.