克服軟弱地盤之圍堤造地工程設計新 思維 - 以基隆港土方收容填區圍堤造 地工程為例

台灣海洋工程學會理事長、國立海洋大學校長/許泰文 台灣世曦工程顧問股份有限公司副總經理/張欽森 台灣世曦工程顧問股份有限公司計畫經理/郭少谷 台灣世曦工程顧問股份有限公司正工程師/胡瑋靖

關鍵字: 圍堤造地工程、軟弱地盤、拋石基礎改良工法、節能減碳

摘要

基隆港十方收容填區圍堤造地工程為克 服軟弱底床承載力不佳問題,確保堤體下方 承載力足夠,以往工程案例皆採用土方清除 之方式進行,惟因本案軟弱土層厚度高達 10 m, 若採置換方式其工程費將大幅提高, 故本工程針對地盤改良工法提出設計新思 維,利用抛石基礎改良工法增加堤底承載 力,以抛放堤心石自然沉陷方式置換軟弱土 層。另造地工程為達到節能減碳及環境永續 發展目標,本計畫造地料源主要以航道、迴 船池之再利用浚挖土方作為擴建港埠用地之 填地料源,减少將疏浚土方海抛或外運之費

用,並響應政府之環境保育政策。整體而 言,基隆港土方收容填區圍堤造地工程,除 配合國家重大建設發展外,後續亦可作為基 隆港區內之施工場地,並兼顧基隆港港池疏 浚及十方收容需要,以達到節能減碳及提升 全球海運之競爭力之目的,使基隆港更具發 展潛力。

一、前言

國內各港口發展規模日益龐大,另因應 環保團體訴求與自然生態保育區之維護,港灣 工程建設已難自由地選擇適當工址進行施工, 轉而尋求工程設計角度來因應各工址之自然條

件不良狀況。海床存在深厚之軟弱黏土層,將 造成港灣構造物基礎承載力不良,並產生劇烈 之沉陷現象,因此,港灣構造物基礎與軟弱黏 土力學特性交互作用探討,勢必為港灣工程與 大地工程學研究之重要課題。

為配合國家重大建設發展,並兼顧基隆 港港池疏浚及土方收容需要,臺灣港務股份 有限公司(以下簡稱臺灣港務公司)遂推動 「基隆港土方收容填區圍堤造地工程」(以下 簡稱本計畫),範圍如圖1,已於111.08完成 本計畫圍堤造地工程,除可因應後續基隆港 擴建工程之施工場地及施工碼頭需求外,亦 可提供基隆港區浚挖土方收容填區,並使現 有航道及迴船池滿足未來貨櫃輪大型化之進 出港水深需求。惟由地質鑽探資料可知(如 圖2),本工程圍堤堤址軟弱土層(SPT-N 值<4)厚度約為10.0 m,為檢核各斷面水深 堤體穩定性,經地工分析軟體STABL計算之 成果可知,若以未經改良前之現況地質進行

圖 1 基隆港土方收容填區圍堤造地工程平面配置圖

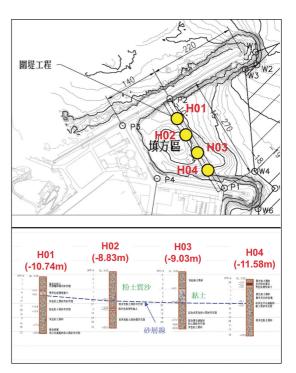


圖 2 圍堤範圍地質鑽探資料

圍堤堤體施作,堤體圓弧滑動各破壞面之安全係數皆小於1.0,顯示未來堤體將可能因海床承載力不足而產生破壞,故勢必針對地盤改良工法提出設計新思維,以克服軟弱地盤之工程問題。

二、工程概述

(一) 圍堤工程

圍堤堤線將以西防波堤堤頭向堤根處 220 m與W33B碼頭延伸至西碎波堤兩點連線 作為定案配置,堤址總長約270 m。相關平面 配置詳圖3所示。

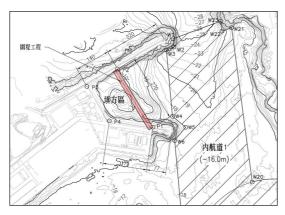
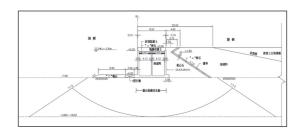


圖 3 圍堤造地工程平面配置圖

(二) 造地工程

依據已奉核之「臺灣國際商港未來發展 及建設計畫(106~110年)」,為降低單位運 輸成本, 近期航商積極部署更大型之貨櫃 船,以提升自身競爭優勢;為配合近年來貨 櫃輪大型化趨勢與航商需求,計畫進港船型 擬提升為6,000TEU貨櫃輪滿載進出港,航 道、迴船池需配合進行浚深至16.0 m,以響 應政府之環境保育政策,再利用浚挖土方作 為擴建港埠用地之填地料源,減少將疏浚土 方海抛或外運之費用。

三、工程之創新性、挑戰性及周延性


(一)友善設計新思維:

為克服軟弱底床承載力不佳問題,確保 堤體下方承載力足夠,以往工程案例皆採用 土方清除之方式進行,即將軟弱土層之部分

全部挖除後,再將承載力良好之石料進行置 換,惟因本案軟弱土層厚度高達10 m,若採 置換方式其工程費將大幅提高,故本工程擬 利用抛石基礎改良工法增加堤底承載力,以 抛放堤心石自然沉陷方式置換軟弱土層,工 法概念示意圖詳圖4所示。

本項工程於堤心塊石拋放時,即對此淤 泥層造成擾動,而產生大量之擠壓置換情 形。初步整理研究報告有關抛石堤興建於軟 弱土層上之物理行為,概述如下:

- 1. 獨立塊石貫入深度:依塊石之浮力大小及 淤泥層之貫穿承載力而定,首抛之獨立堤 心石,依大小形狀分佈約在海底淤泥層下 30 cm~80 cm處。
- 2. 抛石抛放逐漸增加而接觸疊置情形增大 時,大部分塊石呈下沉,部分呈側向推 擠,而邊緣處之塊石則呈隆起情形,如圖5 所示。
- 3. 海床地層承載力檢核:依防波堤斷面計算 作用於海床面之壓力,並依1:1向下傳遞壓

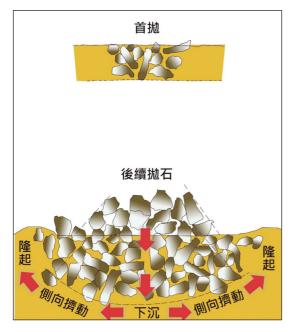


圖 5 抛石抛放擠壓情形示意圖

力,計算結果顯示海床淤泥層之承載力尚 不足以承載抛石層及防波堤之載重壓力, 而必須依靠下層較堅實之土層承載。

4. 依據以往福澳防波堤施工後之鑽孔柱狀圖,結果顯示淤泥層出現完全擠壓置換現象,拋放塊石底部係座落於SPT-N值為5~15較堅硬之地層上。

(二)周延考量不遺漏:

1. 妥善研擬工法工序,以達到預期成效:

為克服軟弱底床承載力不佳問題,確保 堤體下方承載力足夠,擬利用土方置換工法 增加堤底承載力,以抛放堤心石自然沉陷方

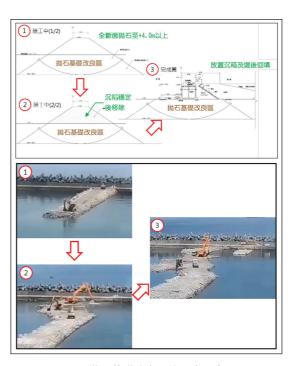


圖 6 抛石基礎改良工法工序示意圖

式置換軟弱土層,並依沉陷監測結果於穩定 後,將未來堤體底部高程以上之石料回收, 方可進行沉箱安放及方塊吊排等工項,本計 畫抛石基礎改良工法工序如圖6所示。而施 工過程中,因基礎抛石將底床之軟弱土層擠 除,造成堤體旁之地盤有隆起現象,為維持 防波堤之設計水深,須定期進行水深測量並 浚深至設計水深。

2. 榫間濾層 - 兼具防漏與維護機能柔性工 法:

圍堤防漏砂設計主要係將海水與回填砂 間以濾石層構造阻隔達成防漏效果,本計畫 主要考量回填料並無嚴重之化學污染性,故

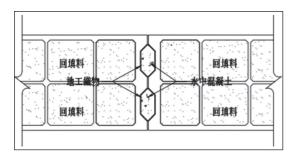


圖 7 沉箱榫槽標準斷面圖

容許同填區內水份滲出,但仍須防止同填材 料藉滲透水一併漏出。通常採用濾層設計防 漏,此為國內常用之方式;濾層之設計在排 除土壤中多餘之水份,或防止土壤之沖蝕, 採用土壤粒徑大小之濾石層方式以達到過濾 及排水效果。

除堤後濾層外,以往漏沙發生位置大多 位於沉箱榫之間隙,故於本計畫中,於沉箱 安置定位好後,將於沉箱榫間灌注水中混凝 土,以確保背填沙不因海水位潮汐或波浪作 用而漏沙。斷面示意圖詳圖7所示。

(三)完善施工計畫安排,克服海上惡劣天 候,友善職安工作環境:

本案共有9座沉箱,以往海事工程沉箱製 作部分皆採用海上浮沉台船進行作業,惟因 近年大型海事工程日益增多,國內浮沉台船 之數量目前尚無法支應本工程,而因本工程 沉箱尺寸相對較小,故本工程可利用基隆港 W28碼頭之升降平台進行沉箱製作,該沉箱

圖 8 W28 碼頭與工址相對平面位置關係圖

基降港 W28 碼頭之升降平台之施工安全防護設 圖 9 施照片

製作場屬基隆港內(平面位置關係詳圖8所 示),將可克服因海上惡劣天候造成之風險, 惟該區域場地較小,無法使用滑模進行沉箱 製作,僅可利用普誦鋼模層層構築,在施工 場地有限之條件下,仍於工期內施作完畢。

每一階段人員之上下進出,或施工人員 之施作,其高度均小於一昇層(2.8 m),大 大降低施工時墜落、滾落之風險,並於臨海 測均加裝安全護欄,使之本為高風險作業之 沉箱施工,依此施工法則變成可有效管控之 施工項目,相關施工安全防護設施照片詳圖9 所示。

四、工程顯著效益:

(一)工程效益:

- 未來圍堤造地完成後,將可提供港區內之 新生地,供基隆港港務使用,以提升基隆 港區作業能量。
- 2. 亦可配合既有W33B碼頭進行連線,延伸 既有W33B碼頭之長度,增加港區碼頭 數,可為基隆港再增加碼頭席數,提升未 來使用彈性,發揮本工程之最大效益。

(二)節能減碳及環境永續發展:

- 1. 由於本工程為於西防波堤及西碎波堤間設置 圍堤,勢必需與既有防波堤銜接,西碎波堤 側大多為4T及8T消波塊,可回收再使用。
- 2. 本計畫沉箱內回填沙及堤後背填沙可就地 取材,採用港區浚挖之土方,減少外購沙

所產生運輸排碳量。

(三)完工現況:

本工程於109年1月18日開工,並於111 年8月10日完工驗收,相關完工照片如圖10 所示。

五、結語

基隆港土方收容填區圍堤造地工程為近 年基隆港較大規模之港灣工程開發案,其中 圍堤造地工程屬港埠建設的先鋒部隊,在有 完善的新生地填築下,方能讓碼頭、道路、 建築及公共設施順利推動與施工,故規劃 設計上更須完整性考量,方可達到最佳的 成效。

圍堤工程為克服軟弱底床承載力不佳問題,確保堤體下方承載力足夠,以往工程案例皆採用土方清除之方式進行,惟因本案軟

(a) 圍堤工程完工

(b) 造地工程完工

圖 10 圍堤造地工程完工照片

弱土層厚度高達10 m,若採置換方式其工程 費將大幅提高,故本工程針對地盤改良工法 提出設計新思維,利用抛石基礎改良工法增 加堤底承載力,以抛放堤心石自然沉陷方式 置換軟弱十層。

造地工程為達到節能減碳及環境永續發 展目標,本計畫造地料源主要以航道、迴船 池需配合進行浚深至16.0 m之再利用浚挖土 方作為擴建港埠用地之填地料源,減少將疏 浚土方海抛或外運之費用,並響應政府之環 境保育政策。

在施工階段除落實規劃設計理念外,並 在安全第一、工進如期、品質符規、航安落 實等各方面高度要求下,設計、監造與施工 團隊共同合作,循序完成此工程。

整體而言,基隆港土方收容填區圍堤造 地工程,除配合國家重大建設發展外,後續 亦可作為基隆港區內之施工場地,並兼顧基 隆港港池疏浚及土方收容需要,以達到節能 減碳及提升全球海運之競爭力之目的,使基 隆港更具發展潛力。

本文僅就基隆港土方收容填區圍堤造地 工程之規劃、設計與施工扼要介紹,圍堤之 設計雖已盡可能完整介紹,然對於細節之交 代仍不免有所遺漏。冀由本文介紹,可作為 日後軟弱土層上之圍堤造地工程規劃、設 計、施工之參考。

參考文獻

- 1. 臺灣港務股份有限公司基隆分公司(2022),「基隆 港航道迴船池水域加深浚挖工程及土方收容填區圍 堤工程」航港新知。
- 2. 台灣世曦工程顧問股份有限公司(2018),「基隆港 航道迴船池水域加深浚挖工程及土方收容填區圍堤 工程」初步設計報告書(定稿)。
- 3. 大地工程技術發展~專業技術發展(2023),「港灣 大地工程技術應用案例」