

以變壓吸附法捕獲燃煤電廠 煙道氣中二氧化碳

國立中央大學化學工程與材料工程學系碩士班研究生/魏子倫、郭家禎、李柏霖 國立中央大學化學工程與材料工程學系博士/曾致堯 國立中央大學化學工程與材料工程學系教授/周正堂 台電綜合研究所化學與環境研究室資深研究專員/楊明偉 台電綜合研究所化學與環境研究室助理研究專員/莊宗諭 廣興儀器材料有限公司經理/張弘震

關鍵字:碳捕獲、二氧化碳、變壓吸附、燃煤電廠煙道氣、13X 沸石

摘要

近年來,為了減少二氧化碳排放量以 減緩全球暖化現象,碳捕獲、利用與封存 (Carbon Capture, Utilization and Storage, CCUS)的相關技術扮演了重要的角色。 在眾多碳捕獲方法中,變壓吸附(Pressure Swing Adsorption, PSA)因具有較低能耗、 低操作成本與簡單操作等優點而逐漸備受重 視,其原理主要是藉由吸附劑對於混合氣體 選擇性高低的不同,以及吸附劑在低壓時利 於脫附、高壓時利於吸附之特性,來達到氣 體分離的目的。本研究以EIKME 13X沸石 (zeolite) 作為吸附劑搭配三塔九步驟真空變 壓吸附程序捕獲台電臺中燃煤發電廠排放後 經預處理之煙道氣中二氧化碳,預處理後之 煙道氣進料含有的二氧化碳濃度約為9.00% -11.74%,經過實驗設計分析後得到最佳PSA 分離結果為二氧化碳純度92.01%、二氧化碳 回收率84.18%、真空幫浦能耗2.20 GJ/tonne-CO₂。

一、前言

近年來,討論全球暖化的議題越來越 多,造成全球暖化的主要因素是排放過多 的二氧化碳。聯合國氣候變遷小組(Intergovernmental Panel on Climate Change,

IPCC)於2021年8月9日發表氣候變遷第六 次綜合評估報告指出,地球暖化速度比科學 家先前觀察到的還要快,全球均溫很可能在 大約十年內就升高攝氏一點五度,突破巴黎 協定的升溫幅度限制。報告依據人類努力減 碳的程度,模擬出五種可能性,結果顯示, 不論哪一種可能性,全球均溫都會在2030年 代升高超過攝氏一點五度,比IPCC三年前 推估的早十年[1]。臺灣氣候變遷科學團隊依 照IPCC報告,2021年8月10日發表「臺灣版 氣候變遷報告」,未來台灣將「乾愈乾、濕 愈濕」,侵臺颱風變少但強度增強,且在最 劣情境下,最快2060年臺灣就沒有冬天。該 團隊回顧臺灣本地氣候觀測發現,過去110 年間,臺灣平地年平均氣溫上升攝氏一點六 度,比全球平均一點〇七度還高,且近50年 至30年增溫還有加速趨勢。減碳是全球勢在 必行的措施。

臺灣位於一個四面環海、自然能源匱乏的位置,因此仰賴石化能源的比例很高。 從經濟部能源局的108年能源統計手冊占 比,煤及煤產品占29.85%,原油及石油產 品占46.92%,天然氣(含液化天然氣)占 14.97%,核能的部分占6.31%,其他再生能 源只占了1.95%[2]。而很大部分的能源都用 在產生電力上面。根據台灣電力公司歷年所 統計的發購電量構成比,在西元2019年發購 電量占比為79.2%火力發電、13.4%核能發 電、6.0%再生能源發電、及1.4%抽蓄水力 發電。其中在火力發電中,燃煤占47.12%、 燃氣占48.22%、燃油占2.40%、汽電共生占 了2.25% [3]。在西元2015年,聯合國氣候 變化綱要公約 (United Nations Framework Convention on Climate Change, UNFCCC) 通 過了「巴黎協定」,期望在21世紀末全球氣 溫升高不超過工業化前的2°C,在此同時台 灣也通過了溫室氣體減量及管理法,計畫長 期減量目標。在國際能源署的資料中顯示, 由於低碳燃料、再生能源及COVID-19的疫 情影響,2020年能源所產生的二氧化碳排放 量可能較2019年下降8% [4]。但在火力發電 的方式中,排放的二氧化碳仍是很可觀的。 在2018年行政院環保署的統計,二氧化碳為 我國所排放溫室氣體中最大宗,約占95.38%

對於二氧化碳的減量,透過碳捕獲及封存(Carbon Capture and Storage, CCS)為成本最低且技術較成熟的減碳方案[6]。這樣的方式是直接從發電廠或製造業工廠中捕集二氧化碳,然後透過管線等方式運輸至合適地點進行封存。藉由這樣的方式長期隔絕二氧化碳和大氣,使大氣層中的溫室氣體濃度維持穩定,延緩全球暖化。

捕獲二氧化碳的行徑如圖1,可以分為三 種:富氧燃燒法(oxy-fuel combustion)、 燃燒前捕獲(pre-combustion)、燃燒後捕獲 (post-combustion),其中燃燒後捕獲的行 徑對現今產業燃燒製造過程衝擊最小,因此 為目前主要的捕獲方法。燃燒後產生之煙道 氣中,二氧化碳的濃度並不高,以燃煤跟燃

圖 1 不同的碳捕獲方式 [10]

氣發電廠為例,燃煤電廠產生煙道氣含二氧 化碳濃度約為10-18%,而燃氣電廠濃度約為 3-8% [7]。而燃燒前捕獲方法是將煤或生質 物料氣化後,經水煤氣反應生成由CO₂、H₂ 組成的合成氣,再從合成氣中分離CO₂、H 組成的合成氣,再從合成氣中分離CO₂,有 高效率和低汙染的優點,但因成本過高,較 少商業應用[8]。富氧燃燒技術是在燃燒過程 中使用高濃度氧氣或純氧,燃燒產生高濃度 二氧化碳的煙道氣,可以直接儲存,其優點 是節能及低汙染,但在產生高濃度氧氣或純 氧的過程中需較大製氧廠和燃燒時需耐高溫 鍋爐,因此較缺少應用[9]。

二氧化碳純化的方法主要可以分為 三種:吸收法(absorption)、薄膜分離 (membrane separation)和吸附法(adsorption)。薄膜分離是使用薄膜本身對氣體分 子的選擇性以及氣體的擴散機制來分離二氧 化碳,其以高分子膜為主,但缺點為不耐高 溫和不抗腐蝕。根據Chao et al. [10],利用乙 醇胺(monoethanolamine,MEA)吸收法捕 獲火力發電廠中煙道氣的二氧化碳是目前最 為廣泛的捕獲技術,但這項技術有能耗大且 有腐蝕設備等缺點。本研究所使用的變壓吸 附法,其優點具有低成本、操作簡單、對環 境衝擊小等。利用壓力的不同造成氣體的吸 附跟脫附,然後選擇合適的吸附劑,達到分 離不同氣體的目的。在純化氣體方面,吸附 法具有相當潛力。

台電綜合研究所於臺中發電廠建置減碳 技術園區,本研究以園區內三塔九步驟真 空變壓吸附程序(Vacuum Pressure Swing Adsorption, VPSA)之裝置探討捕獲燃煤發 電廠1 kw排氣量,經預處理之煙道氣中二氧 化碳。

二、吸附原理

當氣體分子或液體分子接觸到固體表面 時,會因為固體表面的不飽和力影響,產生 相互吸引的作用力,導致氣體分子或液體分 子滯留固體表面,此現象為吸附。此時滯留 的分子稱為吸附物質(adsorbate),固體稱 為吸附劑(adsorbent)。

根據吸附物質與吸附劑之間所產生的作 用力可以分為物理吸附和化學吸附。物理吸 附是依據分子間作用力的凡得瓦力,吸附劑 表面會有多層吸附物質排列滯留,物理吸附 屬於放熱反應,當吸附劑吸附物質後,會 造成溫度上升,而降低吸附劑吸附,在脫附 後,吸附物質性質不會改變,屬可逆反應。 化學吸附則是利用吸附劑跟吸附物質產生的 化學鍵進行吸附作用,因此吸附劑表面只有 單層吸附物質排列滯留,化學吸附會造成吸 附物質在脫附後產生性質變化,較難脫附, 在現今較少使用在環境工程上。

依照程序操作變因的不同區分為:變 壓吸附程序(PSA)、變溫吸附程序(Tem-

圖 2 不同溫度壓力下平衡吸附量的變化 [11]

perature Swing Adsorption, TSA), 兩者是 藉由程序上不同的壓力或不同的溫度, 使得 氣體的平衡吸附量不同,造成氣體分離的效 果,因此塔內溫度及壓力變化就會造成氣體 的吸附或脫附,這樣的方式可以達到混合氣 體的分離並且讓吸附劑脫附氣體再生以利下 次的循環(cycle)使用。

圖2為常見吸附劑的等溫平衡吸附曲線 (isotherm),在變壓吸附(PSA)程序中, 選定操作溫度(T_{ads}),在高壓(P_{ads})時因 吸附劑有較大的平衡吸附量(q_{ads}^*),因此進 行吸附,此時強吸附氣體會吸附在吸附劑 表面,弱吸附氣體會從塔頂被排出。當達 到飽和吸附量時,程序壓力會降到脫附壓力 (P_{des}),此時壓力低會有較小的平衡吸附量 (q_{des}^*),吸附劑會使強吸附物脫出,然後再 生。而在變溫吸附(TSA)程序中,擇定操 作壓力(P_{ads}),在低溫(T_{ads})時吸附劑有

較大平衡吸附量(q^{*}_{ads})會造成吸附物吸附, 當達到飽和吸附量時,會升溫至脫附溫度 (T_{des}),這時跟變壓吸附(PSA)相同,會使 得平衡吸附量下降,強吸附氣體會被脫出並 同時讓吸附劑再生。

三、變壓吸附程序介紹

最先提出變壓吸附程序的理論是由 Skarstrom [12]所提出,起初是為了分離空氣 設計,後來演變為乾燥空氣的商業程序,稱 為 Skarstrom cycle,一個循環包括了進料加 壓、產氣、逆向減壓、低壓沖洗四個步驟, 示意圖如圖3。然後隨著不一樣吸附製程的改 良與翻新,越來越多的操作程序可供選擇, 其中包括增加塔的數量跟兩階段的變壓吸附 程序等。

以下是常見的操作步驟:

1. 進料加壓 (Pressurization)

在高壓下,把欲分離之混合氣體從塔底 進料端通入吸附床內且關閉塔頂排氣端,使 混合氣體在吸附塔內累積,並且同時讓壓力升 高。根據吸附劑在不同氣體有不同的選擇性, 吸附劑會吸附較多強吸附氣體,弱吸附性氣體 比較少被吸附,使得氣相中強吸附氣體成分濃 度降低、弱吸附氣體成分濃度提高。

圖 3 Skarstrom cycle.

2. 高壓吸附(Adsorption)

接著進料加壓後面的步驟,開啟塔頂排 氣端,且持續讓進料從塔底進入高壓的塔 內。由於吸附劑會吸附強吸附物,弱吸附物 會從塔頂排出,塔頂排出的氣體多為弱吸附 物,被稱為萃餘(raffinate)氣[13]。吸附過 程中,塔內會產生濃度波前(concentration wavefront),在濃度波前未到達的氣相區 域濃度還是以弱吸附氣體為主,直到濃度 波前通過塔頂排氣端為止,此時稱為突破 (breakthrough)。當吸附塔達突破時,萃餘 氣中強吸附物氣體濃度會大幅度上升,因此 進料時間的選擇將影響強吸附物回收率的優 劣[14]。

3. 逆向減壓(Countercurrent depressurization)

吸附塔中氣體會從塔底進料端釋出 (blowdown),因為塔內壓力降低,吸附 劑上的強吸附氣體會脫附,使得強吸附氣體 從塔底產出,此時氣體稱為萃取(extract) 氣,同時也使得吸附劑得以再生。

4. 低壓沖洗 (Purge)

利用高壓吸附所產生的部分萃餘氣從塔 頂通入吸附塔內進行沖洗,藉由濃度差將存在 在吸附劑孔隙內強吸附物沖洗出來,以提高吸 附劑的再生效果。此步驟可以讓吸附劑內強 吸附物量極低,達到增加萃取氣中強吸附物氣 體的回收率,但會降低強吸附氣體濃度。

接著是四個基本操作步驟之外的步驟流程:

1. 同向減壓(Cocurrent depressurization)

這個步驟塔內氣體流出流向與進料流向 相同,且塔內減壓,與前面的逆向減壓不同 處在於塔內氣體流出流向相反,且此步驟通 常操作於收集強吸附氣體的步驟前。目的在 將塔內弱吸附氣體從塔頂排出,並同時增 加塔內氣相的強吸附氣體濃度,以提高下個 步驟收集強吸附氣體的濃度,最早使用於 Union Carbide 公司的程序 [15]。

2. 壓力平衡(Pressure equalization)

藉由高壓吸附塔與低壓吸附塔相連,高 壓吸附塔會從塔頂排氣端把氣體通入低壓吸 附塔而降壓,低壓吸附塔會從塔頂排氣端接 收高壓吸附塔排氣而加壓,目的在於可以節 省加壓所需之能耗[14];適時的加入此步驟 可以提升產物的純度和回收率,Jahromi et al. [16]在變壓吸附上結合LNG(liquefied natural gas)/NRU(nitrogen rejection unit)裝置 下生產氦氣,從中發現原本三塔三步驟的條 件,加上壓力平衡步驟變成三塔五步驟之 程序,可以讓塔頂氦氣純度從73.2%提升到 94.3%,且回收率從19.0%大幅升至62.1%。

3. 真空脫附(Vacuum)

將吸附塔抽至真空的步驟以代替低壓沖 洗或逆向減壓的步驟,目的以提高強吸附氣 體的純度和回收率,此步驟由de Montgareuil 和Domone [17]在1964年提出。Air Products 公司則在1970年代將此步驟應用在同時產 生氮氣和氧氣的分離程序上面,利用了真空

脫附步驟的變壓吸附程序,稱為真空變壓吸 附程序。

4. 前處理床 (Pretreatment beds)

將變壓吸附程序結合前處理床是由Heinze 所提出[18]。因為空氣中的水氣對沸石有較強 的吸附性且不易脫附容易累積在吸附塔內。因 此在變壓吸附程序前添加前處理床的步驟是 一個解決辦法。對於去除水氣,常見前處理床 會裝填矽膠或氧化鋁以去除水氣。

5. 產物潤洗(Rinse)

這個步驟與低壓沖洗(purge)的不同 之處在於使用高濃度的強吸附氣體潤洗,而 低壓沖洗為使用高濃度的弱吸附氣體沖洗。 此步驟的氣體進料及流動方向跟高壓吸附相 同,強吸附氣體會通入吸附塔塔內空隙沖 洗,並吸附在吸附劑上面,目的在於提高強 吸附氣體在塔底的純度[14],但如果潤洗時 間過長,則會造成塔底產物回收率大幅降低 [19]。

6. 溫度平衡(Temperature equalization)

吸附時的放熱反應會使塔內溫度上升, 和脫附時的吸熱反應會使塔內溫度下降,兩 者造成的溫度變化都不利分離程序的進行。 為了達到恆溫操作,Chihara和Suzuki [20]利 用變壓吸附程序進行空氣乾燥時發現,把循 環時間與流量減少可以使變壓吸附程序的溫 度變化在10°C內,然而在大型分離程序中效 果有限。Collins [21]提出在塔內設置加熱器 的設計,不僅可以減少溫度變化,也明顯增 加產物的濃度和回收率。

7. 多塔PSA程序(Multibed PSA process)

為了提高雙成份混合氣體中產物的純度 和回收率,也為了在多成份混合氣體中得到 兩種以上的產物,多塔多步驟的程序被開發 應用。Doong 和Yang [22]以5A沸石作為吸附 劑,利用四塔變壓吸附程序進行氫氣純化, 使得氫氣濃度可達99.99%以上。Jiang et al. [23]利用五塔十一步驟變壓吸附程序自混合 氣體中分離氫氣,以得到氫氣的最佳化回收 率。Rudelstorfer和Fuderer [23]提出七到十塔 絕熱變壓吸附程序可有效純化氫氣。

四、實驗裝置

(一)預處理裝置

本研究的預處理裝置主要為水洗塔 (scrubber)以及吸附式氣體乾燥機。煙道氣 經由魯式鼓風機輸送至減碳園區進行PSA程 序前會先送入水洗塔除去煙道氣中的硫氧化 物(SO_x),水洗塔之外觀如圖4所示,煙道 氣由下往上進入水洗塔,水則是使用幫浦由 儲水槽抽至水洗塔上半部並噴灑下來,再流 回底部的儲水槽,儲水槽內設有pH值偵測器 以隨時監測放流水的pH值,以實驗而言,pH 值大約介於5.5~6.5之間都屬正常,此外,pH 值需高於5.5方可進行實驗,否則可能會對後 端裝置造成損害。

圖 4 除硫水洗塔

進行水洗後之煙氣會使用加壓幫浦送至 一煙氣儲槽,接著經由迴轉式空氣乾燥器初 步乾燥後再送至外觀如圖5的吸附式氣體乾燥 機,進一步去除煙道氣中絕大部分的水分, 最後經由精密過濾器將進料煙道氣中剩餘的 少許水分與粉塵過濾後才會送至乾燥煙道氣 儲槽中。

吸附式氣體乾燥機內填充乾燥劑,裝置 本身能自動進行吸附水分與再生的程序,乾 燥機外會顯示乾燥完成後送出氣體之露點溫 度(dew point temperature),露點溫度通常 需低於負50度C才可送至變壓吸附裝置端。

本研究之真空變壓吸附裝置共有3個吸附

圖 5 吸附式氣體乾燥機真空變壓吸附裝置

圖 6 三塔式真空變壓吸附裝置

塔,外觀如圖6所示。吸附塔外徑15.24 cm, 內徑14.44 cm,吸附塔內填充吸附劑長度40 cm。每一個吸附塔上均設有塔內溫度偵測 器與塔內壓力偵測器,其他裝置包括真空幫

圖 7 二氧化碳分析儀

(註:四台二氧化碳分析儀分別測量進料處、上產品管路處、同向減壓管路處與逆向減壓抽真空的下產品處的二 氧化碳濃度)

圖 8 三塔式真空變壓吸附測試平台裝置圖

 浦、質量流量控制器(Mass flow controller, MFC)、壓力控制器(Pressure indicator controller, PIC)、加壓幫浦、外觀如圖7的
二氧化碳濃度分析儀,以及各種閥件如氣動 閥、電磁閥與手動式球閥等。圖8為三塔式真 空變壓吸附測試平台裝置圖,圖9為人機介面 的控制畫面。

圖 9 人機介面的控制畫面

五、三塔九步驟真空變壓吸附程序

本研究使用真空變壓吸附裝置分離煙道 氣中二氧化碳之實驗是採用三塔九步驟的操 作程序進行,包含高壓吸附(adsorption)、 同向減壓(cocurrent depressurization)、逆向 減壓(countercurrent depressurization)、壓力 平衡(pressure equalization)、靜置(idle) 組成九個步驟,示意圖與步驟對照表如圖10 與表1所示。

接下來將以吸附塔1(Bed 1)的運轉步 驟說明實驗情境: 1. Step 2、3:高壓吸附(adsorption)

將塔底進氣端與塔頂連通至上產品出料 端(以圖9來說明即為通過PIC-E與MFC-E 的管路)的氣動閥開啟(即B1S1與B1S2開 啟)後,乾燥煙道氣會以壓力2.2 barg與流 量60 SLPM持續進料,由於塔頂連通至上 產品端中途的PIC-E設定值為1.8 barg,因此 可使塔內壓力累積並維持在高壓狀態,此時 吸附劑會吸附大部分的強吸附物質(CO₂), 幾乎為弱吸附物質(N₂)組成的混合氣體 則由塔頂排出,同時以MFC-E和二氧化碳 分析儀紀錄上產品中的流量與二氧化碳濃 度。

Step	1	2	3	4	5	6	7	8	9
Bed 1	P.E.	Adso	rption	P.E.	P.E.	Co-D	Counter-D	P.E.	Idle
Bed 2	Counter-D	P.E.	Idle	P.E.	Adsorption		P.E.	P.E.	Co-D
Bed 3	P.E.	P.E.	Co-D	Counter-D	P.E.	Idle	P.E.	Adso	rption

表 1 實驗之三塔九步驟程序對照表

(\ddagger : P.E. = Pressure Equalization; Counter-D= Countercurrent Depressurization; Co-D = Cocurrent Depressurization)

圖 10 實驗之三塔九步驟程序圖

2. Step 1、4、5、8: 壓力平衡 (pressure equalization)

以單一吸附塔為主體來看,本研究的壓 力平衡可分為2種情形,就塔1而言,第一種 情形是塔1內的壓力較高,連通至塔內壓力較 低者而使塔內壓力下降,如步驟4和5,如此 能減少接續的同向減壓與逆向減壓步驟時抽 真空所需的能耗;第二種則是塔1內的壓力 較低,與塔內壓力較高者連通而提高塔內壓 力,如步驟1和8,此做法可縮短高壓吸附步 驟進料時塔內壓力提升至高壓的時間。

3. Step 6:同向減壓 (cocurrent depressurization)

開啟塔頂排氣端(B1S4)、電磁閥 S301、S302、S305與真空幫浦P307,關閉 其餘與塔1連通的閥件進行同向減壓,並以 MFC-D與PIC-D控制其流量與壓力、二氧化 碳分析儀值測其濃度,此步驟可由塔頂將塔 內大部分的弱吸附物質與少部分的強吸附物 質抽出,進而提高逆向減壓步驟時收集強吸 附性氣體的濃度。

4. Step 7: 逆向減壓 (countercurrent depressurization)

進行逆向減壓時,需開啟塔底排氣端 (B1S3)、電磁閥S201、S202、S207與真空 幫浦P210,並關閉其餘與塔1連通的閥件, 利用真空泵浦將塔內壓力抽氣至低壓,並以 MFC-F與PIC-F控制流量與壓力、同時利用二 氧化碳分析儀偵測其濃度。 此時隨著塔內壓力下降至接近真空,吸 附在吸附劑上的強吸附物質(CO₂)漸漸脫 附,使得塔內的CO₂氣相濃度逐漸上升,氣 體從塔內自塔底排出。

5. Step 9:靜置(idle)

為了靜待其他吸附塔運行相關之步驟, 此時會將連通至塔1內的所有閥件關閉。

接著討論全因子實驗設計(Design of Experiments, DOE),本實驗挑選步驟1/4/7 時間(Step 1/4/7 time,壓力平衡/逆向減壓時間)、步驟2/5/8時間(Step 2/5/8 time,高壓吸附/壓力平衡時間)、步驟3/6/9時間(Step 3/6/9 time,高壓吸附/同向減壓時間)共三個 變因作為探討對象,並使用兩水準之實驗設計方法,意即每個操作變因都須選用高低水 準兩種條件去進行排列,即2^k之全因子實驗 設計,也就是說,假使要執行完所有組合條 件的實驗,共需2^k次實驗。

本次研究選用三個因子作為操作變因進 行二水準的全因子實驗設計(2k Design),總 共需作2³ = 8組實驗,並使用Minitab作為分 析軟體,而全因子設計之高低水準數值及代 號如表2所示,步驟1/4/7時間(300秒及400 秒)、步驟2/5/8時間(200秒及240秒)、步驟 3/6/9時間(90秒及160秒)。表3為建構8組實 驗之詳細內容與數值,而表中以+(正號) 代表各變因之高水準,-(負號)代表低水 準。

變因	代號	低水準	高水準
步驟 1/4/7 時間(秒) (壓力平衡/逆向減壓時間)	А	300	400
步驟 2/5/8 時間(秒) (高壓吸附/壓力平衡時間)	В	200	240
步驟 3/6/9 時間(秒) (高壓吸附/同向減壓時間)	С	90	160

表 2 三塔九步驟 VPSA 實驗之變因高低水準數值及代號

表3 三塔九步驟 VPSA 實驗之2 水準3 變因全因子實驗設計

		Factor	
Run	А	В	С
1	300 (-)	200 (-)	90 (-)
2	400 (+)	200 (-)	90 (-)
3	300 (-)	240 (+)	90 (-)
4	400 (+)	240 (+)	90 (-)
5	300 (-)	200 (-)	160 (+)
6	400 (+)	200 (-)	160 (+)
7	300 (-)	240 (+)	160 (+)
8	400 (+)	240 (+)	160 (+)

由於本實驗僅有8組實驗數據,為避免誤 差值影響其顯著性之判斷,因此選定α = 0.05 作為顯著水準(significant level),一般而 言,顯著水準愈小,表示其決定顯著與否之 標準愈嚴格。

六、實驗結果

實驗設計分析上通常會利用效應常態機 率圖(normal plot of effects)、效應半常態 機率圖(half normal plot of effects)及效應 柏拉圖(Pareto chart of effects)來判斷顯著 因子與各因子的重要性。效應常態機率圖可 以判斷因子影響之重要性和方向性,因子若 在藍線的左側為負效應,右側則為正效應, 顯著程度越高就會離圖中的藍線越遠;效應 半常態機率圖則顯示了效應常態機率圖(從 最大效應到最小效應)的絕對值;而效應柏 拉圖除了能判別顯著因子之外,還能比較主 要因子與交互作用因子影響結果的相對大 小。

圖11與圖12分別為二氧化碳純度的效應 常態機率圖和效應半常態機率圖,由圖中可 看出對於三塔九步驟真空變壓吸附實驗之塔 底二氧化碳純度而言,只有Step 3/6/9 time

圖 11 二氧化碳純度的效應常態機率圖

圖 12 二氧化碳純度的效應半常態機率圖

(C)具有顯著性,因為此因子在效應常態機 率圖和效應半常態機率圖中都離藍線最遠, 離藍線越遠的因子代表越顯著,而由純度的效應柏拉圖如圖13所示,由圖中也可看出

圖 13 二氧化碳純度的效應柏拉圖

Step 3/6/9 time (C)的影響性最高,其餘由大 到小依序為Step 1/4/7 time與Step 2/5/8 time 與Step 3/6/9 time的交互作用(ABC)、Step 1 time與Step 3/6/9 time的交互作用(AC)、Step 2/6/8 time (B)、Step 2/6/8 time與Step 3/6/9 time的交互作用(BC)、Step 1/4/7 time (A)、 Step 1/4/7 time與Step 2/5/8 time的交互作用 (AB)。

塔底二氧化碳回收率的效應常態機率 圖、效應半常態機率圖分別為圖14和圖15, 由圖中可以得知,Step 1/4/7 time(A)和Step 3/6/9 time(C)對塔底二氧化碳回收率具有顯 著性的影響,不過在效應半常態機率圖中, Step 1/4/7 time(A)位於藍線的右側,Step 3/6/9 time(C)則在左側,此情形表示對塔底 二氧化碳回收率而言,Step 1/4/7 time(A)為 正效應,其數值越大,塔底二氧化碳回收率 會越高;反之,Step 3/6/9 time(C)則為負效 應,其數值越低,塔底二氧化碳回收率才會 越高。而經由圖16的回收率的效應柏拉圖 可得知影響的因子強度由大至小分別為Step 3/6/9 time (C)、Step 1/4/7 time (A)、Step 2/5/8 time (B)、Step 2/5/8 time與Step 3/6/9time的交互作用(BC)、Step 1/4/7 time與Step 2/5/8 time的交互作用(AB)、Step 1/4/7 time 與Step 2/5/8 time與Step 3/6/9 time的交互作用 (ABC),最後則為Step 1/4/7 time與Step 3/6/9time的交互作用(AC)。

圖 14 二氧化碳回收率的效應常態機率圖

圖 15 二氧化碳回收率的效應半常態機率圖

真空幫浦能耗的效應常態機率圖、效應 半常態機率圖以及效應柏拉圖如圖17、圖18 和圖19所示,由效應常態機率圖與效應半常 態機率圖中可看出沒有任何主要因子或交互

圖 16 二氧化碳回收率的效應柏拉圖

作用因子對真空幫浦能耗有顯著影響,不過 仍可由效應柏拉圖中看出影響能耗的因子與 交互作用因子由大到小依序為Step 1/4/7 time (A)、Step 2/5/8 time (B)、Step 3/6/9 time

圖 18 能耗的效應半常態機率圖

圖 19 能耗的效應柏拉圖

(C)、Step 1/4/7 time與Step 2/5/8 time的交互 作用(AB)、Step 1/4/7 time與Step 2/5/8 time 與Step 3/6/9 time的交互作用(ABC)、Step 2/5/8 time與Step 3/6/9 time的交互作用(BC), 最後則為Step 1/4/7 time與Step 3/6/9 time的交 互作用(AC)。

表 4 為 最 適 化 實 驗 結 果 , 此 結 果 是 利 用 控 制 處 理 後 煙 道 氣 之 進 料 流 速 的 MFC-C、控制上產品(top product)出口 流速的MFC-E、控制同向減壓(cocurrent depressurization)流速的MFC-F、控制逆向 減壓(countercurrent depressurization)流速 的MFC-F、四個二氧化碳分析儀,讀取並記 錄到的數值進行計算所得,而每組實驗的各 項結果均以該組實驗達穩定週期狀態的最後3 個循環進行統計與計算所得,各項流速控制 器之相對位置可參照圖8。

式(1)與式(2)為純度與回收率的計 算方式,式中的t為單一循環的總時間,藉由 這兩個公式可計算出每個循環的二氧化碳純 度與回收率,之後將最後3個循環的數值加總 後平均即可算出表4中的結果。

以本研究的三塔九步驟真空變壓吸附程 序而言,其能耗來源主要為同向與逆向減壓 時的真空幫浦作動,因此本次實驗主要紀錄 的能耗為同向減壓與逆向減壓時共2台真空 幫浦的電流以及電壓數值再換算為電功率。 在實驗進行時,人機介面本身的系統會每隔 10秒紀錄一次電流與電壓,電流與電壓會在 真空幫浦作動時有所變化(主要是電流值的 變化較大),利用式(3)可算出該循環的真空 幫浦能耗,表4中實驗之真空幫浦能耗則是先 計算出最後3個循環的真空幫浦能耗後再進 行平均所得。單一循環中的真空幫浦能耗計 算:

Energy consumption of vacuum pump (based on one cycle) $\left(\frac{\text{GJ}}{\text{tonne} - CO_2}\right)$

$$=\frac{\left[\sum\left(\ensuremath{\,ems}\ensuremath{\mathbb{E}}(I)\times \ensuremath{\mathbb{E}}(I)\right)\right](J)\times 10^{-9}\left(\frac{GJ}{J}\right)}{isitiating in the constraint of the formula of the formul$$

· · · · · · · · · · · · · · · · · · ·					
Feed pres	3.2				
Cocurren	0.3				
Counterc	0.1				
Factor	A. Step 1/4/7 (P.E. / Coun	ter-D) time (s)	400		
	B. Step 2/5/8 (P.E. / Adsor	200			
	C. Step 3/6/9 (Adsorption	/ Co-D) time (s)	90		
	centration and range (%)	10.21 ±0.21			
Top product		CO ₂ purity (%)	1.68		
		CO ₂ recovery (%)	13.17		
Cocurrent depressurization		CO ₂ purity (%)	4.55		
		CO ₂ recovery (%)	2.30		
Bottom product		CO ₂ purity (%)	92.01		
		CO ₂ recovery (%)	84.18		
Energy consumption of vacuum pump (GJ/tonne-CO ₂)			2.20		

表 4 三塔九步驟真空變壓吸附最佳實驗結果

註: P.E.= Pressure Equalization; Counter-D = Countercurrent Depressurization; Co-D = Cocurrent Depressurization

六、結論

本研究以EIKME 13X沸石為吸附劑, 以台電臺中發電廠減碳技術園區三塔九步驟 真空變壓吸附程序捕獲燃煤電廠經預處理之 1 kw排氣量煙道氣中二氧化碳。預處理後的 煙道氣中二氧化碳濃度約為9.00%-11.74%, 其九步驟程序係由高壓吸附、同向減壓、逆 向減壓、壓力平衡及靜置等所組成。經過實 驗設計分析後得到最佳結果為二氧化碳純度 92.01%、二氧化碳回收率84.18%、真空幫 浦能耗2.20 GJ/tonne-CO₂,其進料壓力為3.2 bar,同向減壓壓力為0.3 bar,逆向減壓(真 空脫附)壓力為0.1 bar,步驟1/4/7時間(壓 力平衡/逆向減壓時間):400秒、步驟2/5/8 時間(高壓吸附/壓力平衡時間):200秒、 步驟3/6/9時間(高壓吸附/同向減壓時間): 90秒。未來擬進一步改進 PSA程序,以期達 二氧化碳純度及回收率均在90%以上,以及 降低能耗。

參考文獻

- 聯合報,2021-08-10,A1版,聯合國報告:緊急警報 化石燃料正在摧毀地球,110年。
- 2. 經濟部能源局, 108 年能源統計手冊, June 2020.
- 3. 台灣電力股份有限公司, https://www.taipower.com. tw/tc/Chart.aspx?mid=194, 2021-08-10.
- IEA, Global Energy Review: CO2 Emissions in 2020, https://www.iea.org/reports/global-energyreview-2020/global-energy-and-co2-emissionsin-2020, 2021-08-15
- 行政院環境保護署,溫室氣體排放統計,https:// www.epa.gov.tw/Page/81825C40725F211C/6a1ad12a-4903-4b78-b246-8709e7f00c2b%E3%80%80,2021-08-15.

- 科技大觀園,什麼是碳捕存(CCS)?原理及重要性, https://scitechvista.nat.gov.tw/Article/C000003/ detail?ID=2c4ea6d5-28f9-4ded-b61b-fa892a4c033b, 2021-09-02.
- 楊閎舜、周正堂,變壓吸附程序在二氧化碳捕獲技 術之發展與研究,化工,63卷1期,pp.83-97,105 年。
- 該駿嵩、王志盈,二氧化碳捕獲,科學發展,510 期,pp. 32-37,104年。
- 張育誠、吴國光、焦鴻文、簡國祥、歐陽湘,富氧 燃燒技術之應用與分析,台灣能源期刊,二卷3期, pp. 323-331,104年。
- C. Chao, Y. Deng, R. Dewil, J. Baeyens and X. Fan, Post-combustion carbon capture, Renewable and Sustainable Energy Reviews, vol. 138, article 110490, 2021.
- A. Agarwal, Advanced Strategies for Optimal Design and Operation of Pressure Swing Adsorption Processes, PhD thesis, Carnegie Mellon University, Pittsburgh, 2010.
- C. W. Skarstrom, Method and apparatus for fractionating gaseous mixtures by adsorption, US Patent 2944627, 1960.
- A. E. Rodrigues, M. D. LeVan and D. Tondeur, Adsorption: Science and Technology, Kluwer Academic Publishers, London, 1988.
- W. Choi, T. Kwon and Y. Yeo, Optimal Operation of the Pressure Swing Adsorption (PSA) Process, Korean Journal Chemical Engineering, vol. 20, pp. 617-623, 2003.
- R. T. Yang, Gas Seperation by Adsorption Process, Imperial College Press, London, 1997.
- P. E. Jahromi, S. Fatemi, A.Vatani, J.A. Ritter and A. D. Ebner, Purification of Helium from a Cryogenic Natural Gas Nitrogen Rejection Unit by Pressure Swing Adsorption, Separation and Purification Technology, vol. 193, pp. 91-102, 2018.
- P. G. de Montgareuil and D. Domine, Process for Separating a Binary Gaseous Mixture by Adsorption, US Patent 3155468, 1964.
- G. Heinze, Belgian Patent 613267, assigned to Farbenfabriken Bayer AG, 1962.
- B. K. Na, H. L. Lee, K. K. Koo and H. K. Song, Effect of Rinse and Recycle Methods on the Pressure Swing Adsorption Process to Recover CO2 from Power Plant Flue Gas Using Activated Carbon, Industrial & Engineering Chemistry Research, vol. 41, pp. 5498-5503, 2002.
- K. Chihara and M. Suzuki, Air Drying by Pressure Swing Adsorption, Journal of Chemical Engineering of Japan, vol. 16, pp. 293-299, 1983.
- J. J. Collins, Air Separation by Adsorption, US Patent 4026680, 1975.

- S. J. Doong and R. T. Yang, Hydrogen Purification by the Multibed Pressure Swing Adsorption Process, Reactive Polymers, vol. 6, pp. 7-13, 1987.
- L. Jiang, V.G. Fox and L.T. Biegler, Simulation and Optimal Design of Multiple-Bed Pressure Swing Adsorption Systems, AIChE Journal, vol. 50, pp. 2904-2914, 2004.
- E. Rudelstorfer and A. Fuderer, Selective Adsorption Process, US Patent 3986849, 1976.