

高效能膠固態電解質 在先進電池元件的應用

國立成功大學跨維錄能材料研究中心副主任 / 李玉郎 國立成功大學跨維錄能材料研究中心講座教授 / 鄧熙聖 國立成功大學化工系博士生 / 林宇杏

關鍵字:鋰電池、染料敏化太陽能電池、膠態電解質、固態電解質

在現今的工業應用或日常生活中,先進 電池的開發與使用不只在學術上受到廣泛的 研究,在實際的應用上亦是不可或缺的。先 進電池的種類很多,諸如現今很熱門的鋰電 池、奈米型態的第三代太陽能電池,或是燃 料電池等。其中,鋰電池的功能在儲能,應 用的領域可由現今的特斯拉等電動車至家用 搖控器等日常使用的電子元件。而太陽能電 池的功能在於產能,從早期的矽晶太陽能電 池發展至現今的有機鈣鈦礦或染料敏化太陽 能電池。其應用範圍可以由輔助工業用電, 至家用的物聯網系統。在這些電池的操作 中,電解質(電解液)通常扮演著兩電極間 雷荷傳輸的橋樑及重要角色,然而一般傳統 的電解質都是以液態的電解液為主,液態電 解液通常有較高的離子傳輸速度,但其所含 的溶劑揮發及洩漏會造成元件安全性疑慮, 穩定性不佳等問題;此外,在鋰電池中電解 液易與鋰金屬發生反應,造成電極表面鋰枝 晶生長,造成兩極間的短路現象,也是一個 液態電解液使用的重大問題。以高分子為 主架構的膠/固態電解質,因為很小或無溶 劑揮發的特性,可以有效的改進上述液態電 解質的缺點。但是一般高分子膠化劑的存在 都會使離子導電度下降,因此要如何解決這 些問題,甚至增加這些膠/全固態電解質的 特性是現今這些電池改良、商業化的一大課 題。

以下我們以鋰電池及第三代的染料敏化 太陽能電池為例對目前這些膠/態電解質的發 展做一個簡單的介紹。

圖 1 鋰電池結構圖

一、電池結構及操作原理

 鋰電池:鋰電池的解構如圖1所示。包含正 極、負極、隔離膜及電解液。此電池主要 以過渡金屬氧化物為正極,石墨系碳材為 負極,隔離膜的主要功能為將正負極隔開 避免短路,含有鋰鹽的有機溶液或固態電 解質為連接兩極的橋樑。對於鋰離子電池 來說,正極電位高,銅箔在高電位下易被 氧化,鋁的氧化電位高,鋁箔表層有緻密 的氧化膜,對內部的鋁也有較好的保護作 用,因此通常使用的正極集流體是鋁箔, 負極集流體是銅箔。鋰離子電池的充放電 過程,就是鋰離子嵌入(Intercalation) 及脫嵌(deintercalation)的過程。當電池 放電時,嵌在負極中的鋰原子進行氧化, 形成鋰離子由負極脫嵌出,經電解液傳遞 至正極,電子則由外部電路傳至正極,正 極接收電子後進行還原反應使鋰離子嵌入 正極完成放電反映,而當電池充電時則相 反,鋰離子由正極遷出,經由電解質嵌入 負極,同時電子經由外部電路傳至負極。

有關電極材料,一般傳統的負極材料 為石墨(理論比容量僅為~372 mAh g^{-1}), 但是因其能量密度的限制(~250 Wh kg-1 和~680 Wh L⁻¹),多款高比容量的負極材 料,例如Si基,Sn基和N 摻雜石墨等材 料相繼被開發。此外,高容量負極材料金 屬鋰因具有高理論比容量(3860 mAh g⁻¹) 和最低的氧化還原電位(-3.04 V vs 相對於 標準氫電極電位)成為取代石墨負極的最 佳候選人 [1]。然而, 鋰金屬負極仍有一些 瓶頸使鋰金屬電池的實際應用受到限制, 如圖2所示不可控制的樹枝狀鋰枝晶生 長,和鋰沉積/剝離(Li plating/stripping) 過程中的低庫侖效率 [2,3]、反應所生成 的死鋰(Dead lithium)及不斷增厚的固態 電解質介面層(Solid-electrolyte interface,

圖 2 鋰金屬負極在充放電過程所生成的樹枝狀鋰枝 晶

SEI)皆會造成鋰金屬電池的循環壽命變 差,也會產生一些安全性的疑慮[4]。

 染料敏化太陽能電池:屬於第三代太陽能 電池,與傳統矽晶太陽能電池相比,因具 有低製造成本、可製作可撓式太陽能電 池、受日照角度與高溫環境影響小、可具 有透視度(Transparent, See-Through)、 可應用於以室內光源發電的產品等優點, 因此近期被視為極具發展潛力的太陽能電 池(如圖3)。染料敏化太陽能電池的結構 如圖4所示,其組成包含光電極(工作電 極)、電解質以及對電極三個部分。

圖 3 染料敏化太陽能電池的可饒性(a)、及穿透性 (b).

圖 4 染料敏化太陽能電池的結構圖

- (1) 光電極:主要功能在吸光,包含透明導 電基板(TCO)、氧化物半導體及扮演 吸光重要角色的染料。其中,一般利用 銳鈦礦型二氧化鈦作為光陽極的多孔洞 膜材料,這是因為二氧化鈦有良好的化 學穩定性、銳鈦礦較高的比表面積及電 子的擴散係數。此外,因為TiO₂半導 體只能吸收紫外線,吸光能力不佳,因 此必須使用染料來輔助吸收可見光,這 些染料的消光係數及吸光範圍是影響電 池效率的重要因素。
- (2)對電極:在導電基板上沈積具高催化性 及高導電度之材料,以還原由外電路輸 入的電子。此對電極材料一般使用白 金,近年來一些非白金的材料相繼被開 發,諸如各式碳材,PEDOT等。
- (3)電解質:扮演光電極及對電極間電荷 傳輸的媒介。電解質內包含氧化/還原 對,還原態的離子可還原被激發染料的 電洞,使染料再生。

染料敏化太陽能電池之運作示意如圖 5

圖 5 染料敏化太陽能電池的工作原理

所示,其工作原理可分為五個步驟:

i. 敏化劑接收入射光光子後,電子由基
 態(S⁰)躍遷至激發態(S^{*})。

 $S^0 + h\upsilon \rightarrow S^*$

- ii. 敏化劑之激發電子 (e⁻) 與電洞 (S⁺) 分 離後,隨即注入能階較低的 TiO₂ 導 帶。S^{*}→ S⁺ + e⁻ [TiO_{2(CB)}]
- iii. 電子接著由 TiO₂ 傳輸至導電基板以及外電路傳輸至對電極,並根據外電路電位差輸出功。
- iv. 氧化態電解質於對電極表面藉由其
 高催化活性,接收電子發生還原反
 應。I₃⁻ + 2_e⁻(Pt) → 3Γ
- v. 敏化劑電洞 (S⁺) 則回到基態,並被
 還原態電解質再生 (S⁰)。

 $2S^+ + 3I^- \rightarrow 2S + I3^-$

二、電池的膠/固態電解質

如前所述,目前電池使用的電解質一般 都是液態,然而,不論是在染料敏化太陽能電 池或鋰離子電池中,電池在長期使用下封裝材 料的老化會造成電解質中的溶劑揮發與洩漏, 尤其在高溫下更是明顯。鋰離子電池中,還會 有鋰金屬在負極上枝晶生長的問題。這些現象 不只降低電池壽命,甚至造成電池使用的安全 性問題。在文獻中雖有不少學者探討解決這 些問題的方法,但膠/固態電解質的使用可以 同使解決上述液態電解質的缺點。

膠態電解質的製備是在液態電解質中加

圖 6 高分子型膠 / 固態電解質結構示意

入高分子膠化劑,藉由高分子間的物理交聯 作用,將溶液包覆在高分子鏈所形成的網狀 結構中,使液態電解質轉變為膠態(如圖6 所示)。

三、理想電解質特性

電解質系統的選擇對電池的性能有很大 的影響,理想的電解質應符合以下條件

(一)鋰電池

(1)鋰電池的電解質是由鋰鹽及溶劑(或 分散劑)所組成,電解質應該要是良好的 Li⁺離子導體和電子絕緣體,使鋰離子傳輸變 得容易及自放電情形降到最低(2)具有寬廣的 電位窗,使其在正極與負極工作電位範圍不 會發生降解(3)與電池其他部分(隔離膜、電極 集流體、電極材料)有很好的相容性(4)高熱穩 定性及高化學穩定性,在較寬的溫度範圍內 不發生分解。

(二)染料敏化太陽能電池

(1)此電池之電解液主要在傳輸氧化及還 原離子對,其理想的系統必須有低的氧化/還 原能階,以得到較大電池電位(Voc)。但能階 位置不可低於敏化劑的HOMO能階位置。(2) 氧化/還原對在電解質中有高的溶解度,以 確保電荷載體濃度夠高,能提供足夠的導電 度。(3)氧化還原對離子在電解質中具有高擴 散係數,使其能快速在光電極與對電極間傳 輸並進行電化學反應。(4)電解質在光敏化劑 吸光的波長範圍內不可有明顯的吸光特性, 以避免與光敏化劑競爭吸光,而降低電池對 光的捕獲效率。(5)電解質需具有高穩定性, 避免因電化學反應或光照而產生劣化或其它 副反應,影響電池效能與長效穩定性。(6)電 解質的氧化還原反應速度要夠快,使光電子 能迅速傳遞。(7)電解質組成不可對元件其他 部分有腐蝕反應。

四、膠態電解質(Gel Electrolytes, GEs)

(一)應用於鋰電池之膠態電解質

如前面所述,液態電解質的使用會造成 一些電池穩定性及安全性問題,所以陸續有 膠固態電解質的開發及使用來解決這些問 題。所以近年來,各種穩定鋰金屬負極、抑 制鋰枝晶生長和提高庫侖效率的方法受到廣 泛關注,包括使用添加劑優化膠固態電解質 介面(solid electrolyte interphase, SEI)、 設計功能性電解質、改質隔離膜和構建特殊 結構的負極。膠態電解質也被用於鋰金屬電 池以阻止鋰枝晶,延長電池的循環壽命並提 高安全性。膠態電解質基本由高分子基質 (Polymer matrix)、鋰鹽及有機溶劑組成, 此種高分子凝膠(Polymer gel)同時具有 固態的機械性質和液態的擴散傳導性質。一 般來說,膠態電解質主要有三個部分:高分 子結晶區(Polymer crystalline region)、膨 潤之高分子非結晶區(Swollen amorphous region)、電解質區(Interconnected Electrolyte phases in pores) [5]。

膠態電解質的基礎是高分子骨架,因 此其性能的表現與高分子主體有高度相 關,常用的高分子主體有Polyethylene oxide (PEO) · Poly (methyl methacrylate) (PMMA) · Polyacrylonitrile (PAN) · Polyvinyl chloride (PVC) 和Poly(vinylidene fluoride)(PVDF)。PEO高分子的化學穩 定性高、具有良好的溶劑化能力(Solvation power),故時常被用作高分子基質,但PEO 的結晶區域較多,通常會混摻其他高分子、 添加增塑劑、添加離子液體等方法,使高分 子在常溫下有較高的導離子度。PAN高分子 的化學穩定性及熱穩定性佳[6,7],但其-CN 官能基容易互相作用,導致主鏈內部旋轉阻 力增加,降低高分子鏈靈活性,增加高分子 的結晶性,進而影響電池效能[8]。PVDF為 半結晶高分子,具有高介電常數(8.4)、低 玻璃轉換溫度(-40°C)[9],但其結晶仍會影

圖 7 3D 交聯結構的硼酸鹽濃縮膠態 [14]

響離子在高分子主鏈的傳導。此外,從環境 和經濟的角度來看,研究人員也重視膠態電 解質電解質的骨架材料,從傳統的高分子向 可再生、可降解的材料發展。另一方面,為 了匹配新穎和高性能的正極及負極,具有多 功能性的膠態電解質被廣泛應用。

鋰電池的膠態電解質依製備方法可以分 為兩大類:均質(Homogeneous)及非均質 (Heterogeneous-phase separated)製備方 式。均質法主要有塗佈(Casting method) [10]及原位聚合法(In situ polymerization method)[11],非均質法則需先製備一片具 有孔洞的高分子膜,之後將膜浸泡在電解 質,膜的孔隙率越高,越能吸收較多的電解 質,而製膜的方法有電紡絲(Electrospinning technology)[12]、相轉換法(Phase inversion method)方法等。

Guo等人提出高分子原位聚合之3D網絡結構的雙鋰鹽膠態電解質[13],此網狀的高分子結構能夠抓住陰離子,使鋰離子 順暢地傳輸,進而成功抑制鋰枝晶生成。 Dai等人亦合成具有3D交聯結構的硼酸鹽濃 縮(borate-concentrated)膠態高分子電解質 (3D-BGPE)[14],提高膠態電解質穩定SEI 層的功能,其結構如圖7所示。此結構中的硼 扮演抓住陰離子的角H色,使鋰離子能快速 通過。

圖8 現址凝膠膠態電解質特性示意圖。剛製備出的膠態電解質為液態狀,可直接應用目前的液態 電池灌注系統,經一段時間後電解質凝固成膠,提升電池安全性[15]

Teng等人提出一新型的現址凝膠技術, 將聚偏氟乙烯-六氟丙烯(PVDF-co-HFP)高 分子與電解液混合均匀,製備出膠態電解 質,利用高分子官能基搭配電解質離子特 性,精準掌控高分子電解質的凝固時程,在 電解質為液相注入已放置正負電極及隔離膜 的電池軟包或罐體,電解質在完全濕潤電極 及隔離膜後即凝固,此程序即所謂的現址凝 膠技術(圖8)。此高分子電解質材料可用 於現有電池組裝製程,實用性極高。目前, 利用一般方法所製備的膠熊電解質沒有足夠 的機械強度去抑制鋰枝晶的生長,因此新型 的膠態電解質須具備高導離子度、良好的機 械強度、與電極有良好接觸及抑制鋰枝晶生 長的特性,以利其在鋰電池上的實際應用。 而此一現址凝膠之膠態電解質可利用高分子 網絡幫助鋰離子均匀地遷移到鋰金屬負極表 而,證明能在鋰金屬負極表面形成穩定的SEI 層,目能有效抑制鋰枝晶的生成(圖9),成 功提升電池的循環壽命[15]。

圖 9 膠態電解質成功抑制鋰枝晶生長 [15]

圖 10 液態 (a)、及膠態 (b) 電解液的外觀 [19]

(二)應用於染料敏化太陽能電池之膠態電 解質

基本上,在染料敏化太陽能電池上膠態 電解質使用的目的、製備的方法,以及其與 液態電解液間的優缺點都與鋰電池的膠態電 解質相似,此液態與膠態電解質之外觀如圖 10所示。此膠態電解質同樣藉由高分子間的 物理交聯作用,將溶液包覆在高分子鏈所形 成的網狀結構中。但因為兩種電池所用的溶 劑及組成不同,因此所使用的膠化劑也有差 異。文獻中常作為膠化劑的高分子有PEO、 PVDF-HFP、PMMA及PAN, PAN-VA等。關 於膠態電解質的發展,Cao在1995年即利用 PAN作為膠化劑得到光電轉換效率3~5%的 膠態電池[16]。隨後Grätzel等人利用PVDF-HFP作為膠化劑製備離子液體膠態電解質,

圖 11 (a) 原位膠化電解質的黏度隨膠凝時間的變化; (b) 奈米粒子在膠態電解質中的 Grotthus type charge transport 機制

應用於Z907敏化的元件上可得5.3%的轉換效 率[17]。2003年,相同研究團隊再以PVDF-HFP膠化MPN液態電解質,其Z907敏化元 件之效能可達6% [18]。2010年,Lee等人以 Poly(acrylonitrile-co-vinyl acetate)(PAN-VA)作為MPN系統的膠化劑,使膠態敏化元 件效能於標準光源下達到8.34%[19]。

染敏電池的光電極是多孔性的TiO₂薄膜 結構,因此高黏度的膠態電解質在使用時有 滲入的困難。因此為了可以讓膠態電解質有 好的滲入,在電解質灌注的步驟時會對其加 熱,降低黏度。然而此一方法仍無法使電解 質與光電極做良好的接觸。

為了解決此一問題,Lee研究團隊推 出了一種特殊的原位膠化電解質(in-situ gelation)。此膠態電解質是在高溫下混合聚 (丙烯腈-醋酸乙烯酯)(PAN-VA)和ACN-液 體電解質而製備的。在PAN-VA溶解後的早 期,粘度很低(<10³ cp)溶液具有類似液體 的黏度及流動性。這種特性也意味著聚合物 鏈在這個階段不會相互緊密地相互作用。然 而,粘度隨老化時間的緩慢增加(圖11a), 顯示鏈-鏈相互作用越來越大。根據溶液的表 觀流動性,凝膠狀態大約在16-20天後達到, 其中測得的粘度約為 8 × 10³ cp。對於此一原 位凝膠系統,凝膠過程在室溫下進行緩慢, 因此,膠態電解質 可以在室溫下以液態形式 注入電池,提高其在二氧化鈦奈米結構中的 滲透能力,然後在電池內部進行凝膠化。

此原位膠化電解質的膠凝時間取決於溶 液中膠化劑的量,其濃度越高,膠化時間越 短。此外、在一定膠化劑濃度下,若添加一 些奈米粒子製得的複合膠態電解質也可以 減少凝膠時間。圖11a的結果顯示若添加10 wt.% TiO₂奈米粒子,凝膠時間會從20天縮短 到3天。這是因為奈米粒子的存在會增加高分 子鏈間、及高分子與粒子間的作用力。

在膠態電解質的製備上,藉由奈米粒子

圖 12 染敏電池組裝程序中電解質的灌注式製程(a, b, c)及印刷式製程(d, e, f)

圖 13 PEO/PMMA 系統膠態電解質外觀隨兩者的比例不同的變化(a);及 TiO₂ 奈米粒子添加對膠態電解質外觀 的差異(c, d, e)

添加所製得的複合膠態電解質通常有較佳 的效能。這些奈米粒子在電解質中的效應 包括(a)降低聚合物的結晶度、(b)藉由所謂 的Grotthus type chatge transport mechanism 形成離子傳輸通道,增加離子電導率和離 子擴散率(圖11b)、(c)增加光陽極/電解質 界面(Rct)的電荷複合電阻、(d)降低對電 極/電解質界面(Rpt)的電荷轉移電阻、及 (e)提高聚合物和液體電解質的熱穩定性。 這些影響都有助於提高DSSCs的性能。在 Lee的團隊中使用此一方法所得的凝膠態電 池效率為9.46%,甚至高於相同系統的液 態電池效率(9.03%),若搭配不同的染料 (CYC-B11),更可以使效率達10.58%,這 是目前文獻中最好的凝膠態 DSSC 的效率。

(三)應用於染料敏化太陽能電池之可印刷 式電解質

傳統組裝DSC的方法,是將電解質以灌

注方式來製備元件如圖12 (a, b, c),然而灌注 方法只適合用於液態電解質,且又有封裝不 易、洩漏等問題,不適用於捲軸式及可饒式 的生產製程。為解決此問題,文獻中開發出 一新穎的印刷式電解質製程。此一製程首先 須製作適用於印刷式的凝固態電解質,藉由 此一特性可以將電解質以網印法或刮刀塗佈 法印在光電極上(如圖12 d, e, f),幫助電解 質在多孔性TiO₂光電極的滲入。此類型的電 解質配合印刷製程,更適合應用在大量生產 程序上。

一般膠態電解質無法應用於印刷式製程 之原因,乃在於它們的凝固態電解質結構, 此結構會在印刷過程中被破壞。為了解決這 個問題,凝固態電解質是通過混合聚環氧乙 烷(PEO)和其他高分子以及MPN-碘化物 液體電解質來製備的。此PEO是控制電解質 粘度使其具印刷特性的關鍵材料,而其他高 分子的添加(PVDF, PMMA)則可調控其性 能。以PEO/PMMA系統為例,這些電解質的 外觀會隨兩者的比例不同而改變(如圖13所 示),此外,加入TiO₂奈米粒子亦可調控其黏 度,流變特性及其他效能。

有關可印刷式電解質的相關文獻目前尚 少。2014年,Tzu Chien Wei等人利用非揮發 性離子液體PMII搭配奈米粒子作為增稠劑, 包含TiO₂、疏水性SiO₂及親水性SiO₂以提高 電解質黏度,並以刮刀塗佈法製備元件, 可達到5.39%。2015年Yuh-Lang Lee研究團 隊利用PAN作為增稠劑搭配低揮發性的溶 劑gBL,製備出具有適當黏性的可印刷式電 解質,並添加TiC奈米粒子提升元件效率至 7.45%,於50°C環境下有良好的穩定性,在 次模組染料敏化太陽能電池應用上,可達到 4.11%之光電轉換效率。2017年,同一團隊 以PEO/PVDF共混物搭配MPN電解質與TiO, 奈米粒子,將元件效能提升至8.91%,除元 件穩定性佳外,在面積為11.2 cm²之次模組應 用上,亦可提升至6.45%的效率。而在2018 年,同一團隊改以共混高分子PEO/PMMA搭 配MPN電解質與TiO,奈米粒子,將元件效能 更進一步提升至9.12%,同樣應用於次模組元 件上,其效率可提升至6.78%。由穩定性測試 顯示凝固態電解質所組裝的電池有很好的穩 定性看出。

五、固態電解質

(一)應用於鋰電池之固態電解質

鋰離子電池通常使用有機溶劑當作電解 液,但此種電解液易發生燃燒爆炸等安全性 問題,且鋰枝晶的產生易造成短路,而固態 電解質對鋰金屬相對呈惰性,可以有效分隔 兩極,並取代容易被刺穿的隔離膜及易揮 發的電解液,更可以抑制鋰枝晶(Lithium dendrite)的產生。固態電解質可以分為無機 固態電解質(Inorganic solid electrolyte)、 固態高分子電解質(Solid polymer electrolyte)、複合固態電解質(Organic-inorganic

圖 14 無機固態電解質與固態電極介面接觸不良,再添加緩衝層於介面後,相容性提升,且能大大降低介面的阻 力 [25]

圖 15 (a) 不同介面於正極及陶瓷固態電解質間的比較 (b) 不同介面之充放電性能比較 [25]

hybrid composite electrolyte) [20] °

1. 無機固態電解質:

無機固態電解質又可稱為鋰離子固態導

體(Li-ion solid-state conductor),在室溫 下需要很高的離子電導率,並在工作溫度 下需具有較低活化能。可分為鋰超離子導 體(Lithium superionic conductor)如Li_{2+2x}

Zn_{1-x}GeO₄ [21]、石榴石(Garnet)[22]、鈣鈦 礦(Perovskites)[23]和硫化物(Sulfides) [24]。無機固態電解質有良好的機械性質, 可以避免鋰枝晶穿刺,且因為只有鋰離子在 當中遷移,和傳統的液態電解質相比,有極 高的鋰離子遷移數(t_{Li+}=1)。但要將此類固 態電解質應用仍存在巨大挑戰,其困難之一 是固態電解質與鋰金屬負極之間存在較大的 介面阻抗。目前有效的解决策略是在電解質 與鋰金屬電極的接觸介面構築一層中間緩衝 層來降低介面阻抗,如圖14所示,使用材料 如:高分子、金屬等,可讓無機固態電解質 的應用性大幅提升。

Teng等人提出以特殊官能基的聚丙烯腈 高分子(PAN-based)膠態介面當作LLZTO 無機陶瓷電解質與電極間的緩衝層[25],不 僅可以使固態電解質與鋰金屬的介面相容性 提高,且能提升鋰離子遷移的能力。圖15(a) 為鋰離子於液態介面及膠態介面傳輸的比較 圖,在液態介面鋰離子傳輸時會受到溶劑分 子及陰離子的阻礙,但於膠態介面,PAN高 分子鏈上的-C≡N官能基具高極性會吸引鋰 離子以及具有酯類-C=O官能基溶劑,促進鋰 離子傳導以及電解液的吸收量,製作出具有 高鋰離子遷移數的鋰離子電池。另外,由圖 15(b)可知此電解質系統之充放電效能與電容 量保持率都比液態系統好。

Fu等人引入一層薄薄的鋁(A1)以形成 離子導電的鋰鋁合金(Li-Al alloy),作為 Garnet固態電解質和鋰金屬負極之間的介面 層[26]。原本Garnet固態電解質與鋰金屬接 觸不良,界面處留有間隙;然而,Al塗層將 與Li金屬合金化,並使Garnet固態電解質完 全和鋰金屬電極密合,如圖16所示。這種 設計的界面促進了離子和電子的均匀轉移。 室溫(20°C)下界面電阻從950Ω·cm²降低到

圖 16 使用鋰金屬合金設計的 Garnet 固態電解質和鋰金屬負極之間的介面層示意圖。原本 Garnet 固態電解質與 鋰金屬接觸不良。引入 AI 介面,在 Garnet 固態電解質和鋰金屬之間形成 Li-AI 合金,AI 塗層使 Garnet 固態電解質與鋰金屬表現出良好的接觸。[26]

圖 17 鋰離子在固態電解質中的傳遞機制,可分為(a)非結晶區域(b)結晶區域[27]

 $75\Omega \cdot cm^2 \circ$

2. 固態高分子電解質:

純固態高分子電解質由高分子和鋰鹽所 組成,不含任何溶劑,與無機固態電解質相 比,其具有可撓性、重量輕、與電極間的介 面相容性(Interfacial compatibility)等優良 特性。另外,其具有良好的機械強度,不需 要隔離膜,但因不含溶劑,在室溫下的導離 子度偏低(~10⁻⁸ S cm⁻¹),限制其應用性。 鋰離子在固態高分子電解質中的運動模式主 要是透過與高分子主鏈上的負離子形成配位 作用後,在電壓驅動下,藉由高分子鏈的擾 動來帶動離子遷移。而固態高分子電解質的 傳遞機制分為兩種:第一種是利用高分子非結晶區塊的運動來傳遞鋰離子,第二種則是利用高分子結晶區塊,鋰離子會被束縛在螺旋結構當中與陰離子分離,並在螺旋結構中以跳躍(Hopping)方式傳遞[27],如圖17所示。

常使用的高分子系統包括Polyethylene Oxide(PEO)、Polycarbonate、Polysiloxane、Polyacrylonitrile及Polyvinylidene Fluoride相關系列等。有許多不同種類的 固態高分子電解質,如:交聯型高分子電 解質(Cross-linked polymer electrolyte)、 共聚型高分子電解質(Block-copolymer

圖 18 (a)用於合成固態電解質中所使用的高分子網 絡的單體體的化學結構。(b)固態電解質照 片。(c)說明電解質在電極上原位交聯概念的 示意圖。[28]

electrolyte)、接枝型高分子電解質(Graft/ Comb polymer electrolyte)、混摻型高分子電 解質(Blend polymer electrolyte)等。

Choudhury等人提出將poly(ethylene glycol)dimethacrylate(PEGDMA)混合Bis (2-methoxyethyl)ether(diglyme),並利用 自由基引發劑和UV光使之交聯成固態電解 質,如圖18 [28]。此種電解質直接塗佈於正 負極材料上,接著進行紫外光聚合,只需幾 分鐘的照光時間即可快速生產大量電解質材 料,穩定的連續式生產能降低批次生產程序 中,成本較高及產品品質落差大等問題。目 前使用固態高分子電解質的電池組裝製程需 在電極片上進行高分子塗佈,Teng等人提出

圖 19 使用 Roll to roll 方式之固態鋰電池 [29]

以聚氧乙烯共聚物高分子(PEO-based高分子)為主架構,搭配砂氧烷為交聯劑製備能 在室溫下進行充放電之固態電解質,此固態 高分子電解質為free-standing film兼具粘著性 能,可與正極粉體形成電池正極極片。電池 組裝時僅需正負電極卷及高分子電解質卷, 以roll-to-roll製程裝配,大幅提升組裝精準度 且降低費用。矽氧烷的添加可以提供鋰離子 另一種傳遞的路徑,其可以幫助鋰鹽解離還 有機會提供鋰離子另外的傳輸通道促進鋰離 子的遷移,如圖19 [29]。

3. 複合固態電解質:

有機-無機複合固態電解質是由高分子 基質及無機陶瓷填料(Inorganic ceramic filler)所組成,整合高分子電解質及陶瓷 固態電解質的優點,擁有優異的機械性質、

圖 20 MOF filler 抑制鋰枝晶及固定陰離子機制示意圖 [30]

介面穩定性及高導離子度。無機填料可以 分為兩種: Inert fillers 和Active fillers。 Inert filler主要為陶瓷氧化物,如:Al₂O₃、 SiO₂、TiO₂,其於高分子基質中扮演降 低結晶性(Crystallinity)的固態塑化劑 (Solid plasticizers),另外,藉由表面上 的路易斯酸鹼對(Lewis acid-base) 交互 作用促進鋰鹽Ion-pair的解離,增加更多鋰 離子被傳遞的機會,也可以利用填料表面 上Lewis basic sites,產生鋰離子傳輸的通 道。Active filler為含鋰無機陶瓷粉末,如: Garnet型(LLZO)、Perovskites型(LLTO) 及NASICON型(LAGP、LATP)的陶瓷粉 末。其可以降低高分子結晶區域,也可以增 加鋰離子遷移的能力。添加有機金屬框架 (Metal organic framework, MOFs)型的填

料在解決固態電解質的低導離子度上亦有不 錯的成效,其擁有三維的孔隙結構,提供離 子傳輸的通道。高度連接的金屬骨架可以固 定陰離子,使鋰離子成為唯一可以移動的離 子,增加了鋰離子遷移數。Huo等人以UiO-66為基底合成新型的陽離子有機金屬框架添 加進PEO-LiTFSI系統的固態電解質[30],其 可以有效固定陰離子,也可以抑制鋰枝晶的 產生,機制如圖20所示。

(二)應用於染料敏化太陽能電池之固態電 解質

除了凝膠態-DSSCs(QSDSS)外,固 態(solid state)電解質也被用於製作全固態 DSSC,但與鋰電池相比,無機固態電解質

圖 21 全固態 DSSC 電解質膜外觀

因為不具有氧化/還原對及在奈米孔洞光電極 上的滲入問題,無法應用於DSSC,因此, 只有固態高分子電解質可以使用。然而在此 一主題的研究尚少。目前Lee的研究團隊使用 PAN-VA聚合物來製造固態電解質。首先通過 將20 wt.% PAN-VA與碘系統電解液混合來製 備高粘度電解質糊。然後使用刮刀法在光電 極上直接塗覆電解質漿料並蓋上鉑對電極, 然後將電池至於真空烘箱,在80°C下加熱約 1小時使溶劑蒸發。在溶劑蒸發過程中對電極 施加外部壓力,這提高了固體電解質在多孔 TiO₂薄膜中的滲透。此一程序所製得的全固 態電解質膜具有不同於PGE的果凍狀特性的 彈性特性(圖21)。

固態電解質的電導率與使用MPN為溶劑 製備的PGE相當。因此,PAN-VA基體本身可 能有助於通過Grotthuss電荷轉移機制進行電 荷傳導,該機制負責在本系統中獲得高電導 率。使用8 μm TiO₂層厚度的CYC-B11敏化光 電極的固態電池的效率為7.60%。當10 wt.% TiO₂ NFs添加到電解液中時,固態電池的效 率提高到8.65%。

六、結論與展望

本文簡述鋰電池及染料敏化太陽能電池 的電池化學、以及目前所遇到的挑戰及近年 來電解質材料方面的進展。隨著電子產品、 電動汽機車的蓬勃發展及環保議題的重要, 對於儲能及產能裝置有著大幅上升的需求, 目前市售電池的電解質皆屬液態有機相,因 此提升安全性促使業界及研究人員投入大量 的人力和物力來解決。然而因製程上仍存在 技術瓶頸無法使膠/固態電解質全面商品化。 目前仍需就幾個面向去進行進一步的了解及 研究:(1)離子傳輸的機制:雖然對於鋰電池 內的各個反應介面已有開始建構探討,但對 於固態電解質與固態正極間的探討仍需持續 琢磨;(2)穩定鋰金屬電極:鋰金屬電池易生 成枝晶狀的鋰,故如何設計電解質有效地調 節其沉積行為和了解鋰成核及枝晶生長的機 制至關重要;(3)膠/固態電解質的製程規模 放大:現址凝膠製程及固態電解質Roll-toroll製程可以實踐商業化的目標,但技術的 機遇和挑戰並存;(4)安全性及能量密度的提 升: 關乎電極與電解質材料的選擇與匹配。 近幾年來有很大的進步,但仍然沒有一個最 理想的設計,商業化的挑戰仍透過機制探討 及技術改良漸漸地去解決,下一世代的新型 鋰電池必將帶給人類前所未有的改變。在染 敏電池方面,膠態電池的製程及效率的提升 是較成熟的技術,但在固態電解質方面,因 為沒有溶劑的存在,導電度低,電池效率也 較低。在此一問題上,仍待材料及技術開

發來解決。

參考文獻

- 1. H. Li, Joule, 3 (2019) 911-914.
- W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.-G. Zhang, Energy Environ. Sci., 7 (2014) 513-537.
- S. Nanda, A. Bhargav, A. Manthiram, Joule, 4 (2020) 1121-1135.
- D. Lin, Y. Liu, Y. Cui, Nat. Nanotechnol., 12 (2017) 194.
- S. Chen, K. Wen, J. Fan, Y. Bando, D. Golberg, J. Mater. Chem. A, 6 (2018) 11631-11663.
- H. Akashi, K. Sekai, K.-i. Tanaka, Electrochim. Acta, 43 (1998) 1193-1197.
- P. Raghavan, J. Manuel, X. Zhao, D.-S. Kim, J.-H. Ahn, C. Nah, J. Power Sources, 196 (2011) 6742-6749.
- R. Prasanth, V. Aravindan, M. Srinivasan, J. Power Sources, 202 (2012) 299-307.
- L. Long, S. Wang, M. Xiao, Y. Meng, J. Mater. Chem. A, 4 (2016) 10038-10069.
- N. Mohamed, A. Arof, J. Power Sources, 132 (2004) 229-234.
- H. Duan, Y.-X. Yin, Y. Shi, P.-F. Wang, X.-D. Zhang, C.-P. Yang, J.-L. Shi, R. Wen, Y.-G. Guo, L.-J. Wan, J. Am. Chem. Soc., 140 (2018) 82-85.
- K. Garg, G.L. Bowlin, Biomicrofluidics, 5 (2011) 013403.
- W. Fan, N.W. Li, X. Zhang, S. Zhao, R. Cao, Y. Yin, Y. Xing, J. Wang, Y.G. Guo, C. Li, Adv. Sci, 5 (2018) 1800559.
- K. Dai, C. Ma, Y. Feng, L. Zhou, G. Kuang, Y. Zhang, Y. Lai, X. Cui, W. Wei, J. Mater. Chem. A, 7 (2019) 18547-18557.
- Y.-H. Lin, R. Subramani, Y.-T. Huang, Y.-L. Lee, J.-S. Jan, C.-C. Chiu, S.-S. Hou, H. Teng, J. Mater. Chem. A, 9 (2021) 5675-5684.
- F. Cao, G. Oskam, and P. C. Searson, The Journal of Physical Chemistry, vol. 99, no. 47, pp. 17071-17073, 1995.
- P. Wang, S. M. Zakeeruddin, I. Exnar, and M. Grätzel, Chem. Commun., no. 24, pp. 2972-2973, 2002.
- P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Gratzel, Nat Mater, vol. 2, no. 6, pp. 402-7, Jun 2003.
- C.-L. Chen, H. Teng, and Y.-L. Lee, J. Mater. Chem., vol. 21, no. 3, pp. 628-632, 2011.
- J. Yi, S. Guo, P. He, H. Zhou, Energy Environ. Sci., 10 (2017) 860-884.
- N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, Nat. Mater., 10 (2011) 682-686.

- 22. R. Murugan, V. Thangadurai, W. Weppner, Angew. Chem. Int. Ed., 46 (2007) 7778-7781.
- Y. Inaguma, C. Liquan, M. Itoh, T. Nakamura, T. Uchida, H. Ikuta, M. Wakihara, Solid State Commun., 86 (1993) 689-693.
- 24. Y. Seino, T. Ota, K. Takada, A. Hayashi, M. Tatsumisago, Energy Environ. Sci., 7 (2014) 627-631.
- R. Subramani, Y.-H. Tseng, Y.-L. Lee, C.-C. Chiu, S.-S. Hou, H. Teng, J. Mater. Chem. A, 7 (2019) 12244-12252.
- 26. K.K. Fu, Y. Gong, B. Liu, Y. Zhu, S. Xu, Y. Yao, W. Luo, C. Wang, S.D. Lacey, J. Dai, Sci. Adv., 3 (2017) e1601659.
- R.J. Chen, W.J. Qu, X. Guo, L. Li, F. Wu, Mater. Horiz., 3 (2016) 487-516.
- S. Choudhury, S. Stalin, D. Vu, A. Warren, Y. Deng, P. Biswal, L.A. Archer, Nat. Commun., 10 (2019) 1-8.
- 29. S.-T. Hsu, B.T. Tran, R. Subramani, H.T. Nguyen, A. Rajamani, M.-Y. Lee, S.-S. Hou, Y.-L. Lee, H. Teng, J. Power Sources, 449 (2020) 227518.
- H. Huo, B. Wu, T. Zhang, X. Zheng, L. Ge, T. Xu, X. Guo, X. Sun, Energy Storage Mater., 18 (2019) 59-67.