

低溫儲槽保冷設計

中鼎工程股份有限公司設備設計主任工程師/陳仲正

關鍵字:低溫儲槽、保冷、蒸發氣、預力混凝土

摘要

液化氣體是氣體經過壓縮並冷卻至凝結 點溫度以下呈現液態,在低溫條件下儲存於 儲槽內,為了維持低溫儲存狀態,必須隔 絕外界溫度的影響。本文將介紹地上型全 覆式雙層穹頂低溫儲槽(Full Containment Tank, Double Dome Type)的保冷設計,包 含蒸發氣(Boil Off Gas, BOG)量之計算關 係、內槽底部保冷材承壓能力(Load Bearing Capacity)評估,以及預力混凝土外槽應力分 析與設計。

一、前言

液化氣體因為其低溫常(低)壓的儲存方 式,具備儲存效率高、相對占地空間少、儲 槽易於大型化(儲存量大)等優勢而被廣泛 的應用。液化氣體是氣體經過壓縮並冷卻至 凝結點溫度以下呈現液態,在低溫條件下儲 存於儲槽內,然而儲槽外部暴露在環境溫度 下,造成儲槽內外溫差極大,尤其液化天然 氣(Liquefied Natural Gas, LNG)儲槽設計 溫度更是下探至-160°C或更低,因此隔絕外 界溫度影響的高性能保冷層,也是低溫儲槽 設計重要的一環。

基於安全性的考量,低溫儲槽一般都是 採取雙層槽設計,需考慮槽體構件材質低溫 脆化與保冷隔熱問題,以全覆式儲槽為例, 與低溫儲存物接觸之內槽構件,均採具有良 好低溫耐衝擊特性之鋼材,外槽構件則使 用預力混凝土或低溫鋼材,確保在內槽洩漏 或失效的情境之下,仍可確保密封儲存的功 能。內外槽之間採用保冷材料隔熱,以確保 儲槽內之低溫儲存物每天之蒸發氣量符合業 主合約保證值之要求;另外在外槽底部配置 電熱系統(Heating System),以防止儲槽內 的低溫儲存物透過熱傳效應,將冷能傳遞至 儲槽基礎底下的土壤,使土壤裡的水份結冰 膨脹隆起而造成基礎結構破壞。

二、低溫儲槽保冷設計流程

考量保冷施作空間需求,並依據不同的 保冷層區塊的功能性需求(保冷隔熱優先或

圖 1 低溫儲槽保冷設計流程圖

是抗壓載重能力優先),於內外槽壁之間設置 適當的保冷材料,並初步規劃保冷材料層數 及其厚度。

接續評估保冷層所提供的溫度隔絕功效,在綜合外界環境溫度、外界風速、太陽輻射熱效應、槽底電熱系統等因素影響之下,儲存於儲槽內部之液化氣體,受熱蒸發而產生之BOG最大容許產生率保證值設計, 是否合乎合約要求,藉此判定所選用之保冷材料及其厚度是否恰當。如果BOG之最大產 生率超出合約要求,則重新規劃保冷材料的 選用或設計厚度,直到BOG之最大容許產生 率滿足設計保證值。 低溫儲槽保冷設計最後的步驟為外槽 的應力分析與設計,一般低溫儲槽的外槽 採用預力混凝土外牆與預力混凝土或鋼筋 混凝土基礎底板,在進行外槽熱應力分析 之前應先獲得外槽牆體內、外側的溫度梯 度,此溫度梯度可由上述章節的保冷層規劃 與設計及各種天候與時間下的BOG分析計 算得到,有了溫度梯度資料後即可進行外 槽預力混凝土牆與基礎底板於儲槽正常操作 (Normal Operation)以及內槽洩漏(Inner Spill Condition)狀況下的分析與設計(參考 ACI 376-11)。低溫儲槽保冷設計流程如圖1 所示。

三、保冷層

(一) 選材與配置

內外槽壁之間的隔熱保冷層設置,大致 上可分為槽頂保冷、槽側壁保冷以及內槽底 保冷三個區塊,如圖2所示。保冷材料應具有 使用壽命長、低熱傳導性、抗凍、耐火及不 易燃等特性,槽底保冷材料亦需具備足夠的 抗壓強度來承受儲槽本身和槽內儲存物的重 量與外力負載。

槽頂保冷層規劃在內外槽頂之間,需 充填質輕且保冷絕熱效能高的膨脹珍珠岩 (Perlite Power);槽側壁保冷層規劃則在內 槽壁外側安裝彈性毯(Resilient Blanket), 外槽壁內側鋪設TCP(Thermal Corner Protection),其餘空間則需充填膨脹珍珠 岩,為了防止膨脹珍珠岩進入彈性毯內層, 彈性毯與膨脹珍珠岩之間以玻璃纖維布隔 離。

圖 2 保冷層區域示意圖

依據槽底受力分佈情況與減少冷損的保 冷需求下,將槽底保冷層規劃成內槽壁底 部周圍環狀區與中心圓形區,再依照選用 材料逐層堆疊組成,一般採用剛性多孔玻 璃(Cellular Glass)、珍珠岩混凝土(Perlite Concrete)、輕質混凝土(Lightweight Aggregated Concrete)等作為主要保冷材料。 由於內槽壁底部保冷材料須承載內槽構件與 槽頂/槽側壁保冷層等重量,以及地震力荷 載,選用材質的整體抗壓強度、密度會高 於中心圓形區;低溫儲槽底部主要是藉由熱 傳導形式進行熱量傳遞,而且中心圓形區不 需要具備與環狀區等同的強度,採用的保冷 材料以隔熱性能為優先,熱傳導率則相對較 低,以提供溫度隔絕的功效。

(二)抗壓強度評估

內槽底部保冷層應具有足夠的承重能 力,其抗壓強度亦須確保可以滿足設計條 件,並符合業主設計規範中承壓荷載的安全 係數之要求。

依據不同的設計情境,評估儲槽操作、 水壓試驗、運轉基準地震(Operating Basis Earthquake, OBE)、安全停機地震(Safe Shutdown Earthquake, SSE)等情境下的設計 載重組合,再各別計算每一層保冷材料的承 壓受力情況,並透過調整保冷材厚度與更換 保冷材質的方式,反覆確認,確保其抗壓強 度符合設計規範。

載重則包含來自於設計壓力、水壓試驗 壓力、內槽構件重量、保冷材料重量、儲存 流體重量、水壓試驗流體重量、地震力等造

成之效應。並依據中心圓形區或環狀區的劃 分,評估相對應的設計載重組合。

四、蒸發氣產生率(BOG Rate)

液化氣體以低溫液態方式儲存於儲槽 內,由於儲槽外部暴露於大氣溫度下,大氣 溫度與液化氣體的溫度相差極大,熱傳效應 使外界環境之熱能傳輸(Heat In-leak)至槽 內,使儲存於儲槽內部之液化氣體受熱蒸發 而產生蒸發氣。

蒸發氣產生率與儲槽保冷材料選用及設 計有著密切關係。而蒸發氣之最大容許產生率 保證值依不同業主、不同合約,有不同的規 範。因此保冷材料之選用及設計將依合約中所 規範之最大容許蒸發氣產生率保證值設計。

蒸發氣產生率一般定義為於合約規範之 儲槽最高液位及氣候條件下,每天的蒸發氣 產生率。

依API 625規定,蒸發氣產生率之計算必 需考慮以下氣候條件:

- 1. 日平均最高大氣溫度(Highest One-day Mean Temperature)
- 2. 無風速(No Wind)
- 3. 太陽輻射熱效應(Solar Radiation Effects)

(一)總熱通量(Total Heat Influx)計算

總熱通量之計算如下式(1)所示。

$$Q_{\text{Total}} = Q_{\text{b}} + Q_{\text{s}} + Q_{\text{r}} \tag{1}$$

Q_{Total}:總熱通量(Total Heat Influx)(W)

- Q_b:槽底熱通量(Heat Influx through Bottom Part)(W)
- Q_s:槽側壁熱通量 (Heat Influx through Side Wall Part)(W)
- Q_r:槽頂熱通量 (Heat Influx through Roof Part)(W)

由於儲槽底部之中心圓形區與周圍環狀 區所選用之保冷材料或層數可能不同,造成 熱傳導率與熱通量均不同,因此儲槽底部之 中心圓形區與周圍環狀區之熱通量必須分別 計算,槽底之熱通量與下式(2)所示。

$$Q_{b} = Q_{bi} + Q_{bii}$$
(2)

- Q_b:槽底熱通量 (Heat Influx through Bottom Part)(W)
- Q_{bi}:槽底中心圓形區熱通量(Heat Influx through Center Part of Bottom)(W)
- Q_{bii}: 槽底周圍環狀區熱通量(Heat Influx through Ring Part of Bottom)(W)

各熱通量之區域示意圖如圖3表示。

圖 3 熱通量區域示意圖

(二)槽底熱通量(Heat Influx through Bottom Part)計算

儲槽底部之熱量傳遞方式主要是藉由熱 傳導形式進行,而其熱通量不受白晝及晚間 而有所影響。

其槽底中心圓式區及周圍環狀區之熱通 量計算如下式(3)及(4)所示。

$$Q_{bi} = U_{bi} \times A_{bi} \times \Delta T_{b}$$
(3)

- U_{bi}: 槽底中心圓形區平均熱傳係數(Average Heat Transfer Coefficient)(W/m²-K)
- A_{bi}:槽底中心圓形區受熱面積(Heat Transfer Area)(m²)
- ΔT_b: 槽底兩壁面之溫度差 (Temperature Difference)(K)

$$Q_{bii} = U_{bii} \times A_{bii} \times \Delta T_{b}$$
(4)

- U_{bii}: 槽底周圍環狀區平均熱傳係數(Average Heat Transfer Coefficient)(W/m²-K)
- A_{bii}:槽底周圍環狀區受熱面積(Heat Transfer Area)(m²)
- ΔT_b: 槽底兩壁面之溫度差(Temperature Difference)(K)

其平均熱傳係數之計算可依儲槽底部中 心圓形區及周圍環狀區之保冷材料之層數、 不同層保冷材料之厚度及其各保冷材料之熱 傳導率計算之,如下式(5)及圖4所示。

$$U_{b} = \frac{1}{\left(\frac{t_{b1}}{\lambda_{b1}} + \frac{t_{b2}}{\lambda_{b2}} + \frac{t_{b3}}{\lambda_{b3}}\right)}$$
(5)

U_b:槽底平均熱傳係數(Average Heat

圖 4 平均熱傳係數與各保冷材關係示意圖

Transfer Coefficient) (W/m²-K)

- t_{b1,2,3}:各層保冷材之厚度(Cold Insulation Thickness)(m)
- λ_{b1,2,3}:各層保冷材之熱傳導率 (Cold Insulation Thermal Conductivity)(W/m-K)

(三)槽側壁熱通量(Heat Influx through Side Wall Part)計算

儲槽側壁之熱通量計算與儲槽底部熱通 量之計算同,但必須考慮於白晝期間儲槽一 側會受太陽照射,故該側槽壁之熱通量必須 考慮太陽輻射熱之影響。

儲槽側壁熱通量如式(6)所示。

$$Q_s = U_s \times A_s \times \Delta T_s \tag{6}$$

- U_s: 槽 側 壁 平 均 熱 傳 係 數 (Average Heat Transfer Coefficient) (W/m²-K)
- A_s:槽側受熱面積(Heat Transfer Area)(m²)
- ΔT_s:槽側兩壁面之溫度差 (Temperature Difference)(K)

於白晝期間受太陽照射之影響,單位面 積所吸收之熱量如式(7)、(8)及(9)所示。

$$\mathbf{q} = \mathbf{q}_{\mathrm{r}} + \mathbf{q}_{\mathrm{c}} \tag{7}$$

- q : 單位面積所吸收熱量(Rate of Heat Absorption)(W/m²)
- q_r:單位面積受熱輻射影響之熱量(Rate of Surface Emit Radiation)(W/m²)
- q_c:單位面積受熱對流影響之熱量(Rate of Heat Flow by Convection)(W/m²)

$$q_r = \varepsilon \times \sigma \times (T_s^4 - T_a^4)$$
(8)

- ε :放射率(Emissivity)
- σ:玻爾茲曼常數 (Stephan-Boltzmann Constant)(W/m²-K⁴)
- T_s:儲槽外壁表面溫度(Surface Temperature)(K)
- T_a:大氣溫度(Ambient Temperature)(K)

 $q_{c} = h \times (T_{s} - T_{a})$ (9)

h :表面對流係數(External Convection Coefficient)(W/m²-K)

從式(7)、(8)、(9)及業主規範所訂之 太陽照射下之單位面積所吸收之熱量可計算 出在白晝期間受太陽照射下該儲槽側壁之壁 面溫度。

(四)槽頂熱通量(Heat Influx through Roof Part)計算

儲槽頂部之熱通量計算與儲槽側壁之熱

通量計算同,必須考慮於白晝期間儲槽頂部 受太陽照射之輻射熱影響。以雙層穹頂式儲 槽為例,儲槽頂熱通量如式(10)所示。

$$Q_r = U_r \times A_r \times \Delta T_r \tag{10}$$

- U_r: 槽頂平均熱傳係數(Average Heat Transfer Coefficient)(W/m²-K)
- A_r:槽頂受熱面積(Heat Transfer Area)(m²)
- ΔT_r:槽頂兩壁面之溫度差 (Temperature Difference)(K)

受太陽照射下輻射熱影響之槽頂頂面溫度 可依式(7)、(8)、(9)及業主規範所訂之太 陽照射下之單位面積所吸收之熱量計算而得。

(五) 蒸發氣產生率計算

低溫儲槽內容物受外界溫度影響,受熱 所產生之蒸發氣如式(11)所示。

$$R = 24 \times 3600 \times Q_{Total} (V \times \rho \times L) \times 100$$
(11)

R:蒸發氣產生率(BOG Rate)(wt%/day)

- V:儲槽於最高液位下之容量(Tank Content Volume)(m³)
- ρ:儲槽內容物之密度(Density)(kg/m³)
- L:儲槽內容物之潛熱(Latent Heat)(KJ/ kg)

利用式(11)可求得每日蒸發氣質量產 生率,並與合約規範中所訂之最大容許蒸發 氣產生率保證值比較以判定所選用之保冷材 料、保冷材料層數及其厚度是否恰當。

五、預力混凝土外槽應力分析

預力混凝土外槽分析上分為熱傳導分析 以及熱應力分析。

(一)熱傳導分析

熱傳導分析主要是確定外槽壁各區域的 溫度,以及是否有低於-20°C的區域,由於低 溫因素,鋼筋、混凝土、預力鋼材等應採用 非線性的材料參數。分析模型如圖5所示。

有限元分析模型元素採用立體元素 (Solid),並且將網格(mesh)劃分成較細密 的單元,以檢核牆內鋼筋與預力鋼材的應力-應變與牆內各點的溫度。

(二)熱應力分析

熱應力的分析模型與圖5熱傳導分析一 致,可續用以進行熱應力分析,熱應力分析 主要的分析重點在於混凝土、鋼筋、預力鋼 材的應力-應變,並檢核殘餘壓力區(Residual Compression Zone, RCZ)的應力以及裂縫寬 度,尤其是TCP以上的位置。

圖 5 熱傳導分析模型

圖 6 TCP 以上的溫度變化

預力混凝土外槽的設計必須能夠容納內 槽溢出的液體與氣體,因此一旦內槽發生洩 漏,低溫液體將逐漸流入內、外槽間的環 形空間(Annular Space)內,此過程剛開始 時,低溫液體將保留在TCP區域內,一旦液 體到達TCP的上緣,表示TCP在預力混凝土 牆錨定溫度低,有最大荷載,詳圖6所示, 其原因是鋼製埋件冷卻收縮,而混凝土的 溫度尚未受冷,因此不會收縮,ACI 376-11 規定,為確保TCP錨定板(Anchor Plate)不 會由牆面脫落,TCP錨定區上方至少兩倍牆 厚之區域,最大裂縫寬度為0.2 mm,如圖7 所示。

分析時,有限元模型應考慮溫度隨時間 變化過程,進行瞬時非彈性分析,開裂分析 應反映混凝土應力-應變性能以及考慮受拉硬 化效應,混凝土開裂計算應採用BS EN 1992-1-1的規定進行,裂縫寬度計算採用特徵值而 不是平均值。

圖 7 TCP 處之錨定

內槽洩漏,外槽必須容納液體並抵抗氣 體壓力,因此混凝土橫截面必須滿足液密性 的需求,EN 14620僅要求在混凝土橫截面內 形成100 mm的RCZ,但ACI 376-11則要求橫 截面的10%或90 mm,兩者取大值,再加上 混凝土RCZ的平均殘餘壓應力不得小於1 MPa (1 N/mm²),ACI 376-11規定的RCZ之壓縮 應力1 MPa已被視為最低要求。

如果液體與氣體繼續洩漏,液位繼續升 高,低溫液體會直接與預力混凝土牆接觸, 混凝土開始冷卻。由於洩漏的流量與液位的 升高是未知的,通常會檢驗4-5個液位,最高 液位與TCP錨定液位,以及介於這兩者間的 兩個液位。考慮以上各種液位後,槽壁最大 彎矩通常出現於TCP錨定的正上方區域大約 2d的範圍內,如圖7所示。

最後將熱應力的分析結果結合OBE地震

圖 8 內槽洩漏 +OBE 地震(or ALE 地震)分析模型

力(BS EN 14620)或是ALE餘震地震力(SSE After Shock Level Earthquake = 0.5xSSE, ACI 376-11)進行鋼筋、混凝土與RCZ的應變 檢核,分析模型如圖8所示,分析模型材料依 然採用非線性材料參數。

如在正常操作或緊急(包含洩漏)的情況 下,鋼筋溫度降到-20℃以下的區域,對鋼筋 有更嚴格的要求,設計時需降低鋼筋的容許 拉應力,或是改用低溫鋼筋,但採用低溫鋼 筋成本相對較高。

六、結論

冷凍儲槽保冷材料之設計,含保冷材料 之選擇、保冷材料厚度、保冷材料層數等應 依合約規範中所訂之最大容許蒸發氣產生率 保證值設計,以設計最佳效益、符合成本之 保冷材料。基於安全性的考量,當內槽洩漏

所引發的低溫衝擊效應,外槽應提供相對應 的設計與防護措施,確保其品質及安全性滿 足設計要求。

參考文獻

- 1. ACI 376-11 "Code Requirements for Design and Construction of Concrete Structures for the Containment of Refrigerated Liquefied Gases and Commentary".
- 2. NFPA 59A "Standards for Production, Storage and Handling of Liquefied Natural Gas (LNG)", 2019.
- 3. API 625 1st Edition "Tank system for Refrigeration Liquefied Gas Storage", 2019.
- 4. BS EN 14620 "Design and Manufacture of Site Built, Vertical Cylindrical, Flat-bottomed Steel Tanks for the Storage of Refrigerated Liquefied Gases with Operating Temperature between 0 ~ -165°C", 2006.
- 5. Adrian Bejan and Allan D. Kraus "Heat Transfer Handbook", John Wiley & Sons, INC.
- 6. Josef Rötzer "Design and Construction of LNG Storage Tanks", Ernst & Sohn.
- 7. BS EN 1992-1-1 "Design of concrete structures Part 1-1 : General rules and rules for buildings", 2004.