

桃園貯水池水文監測與 動態分析管理平台之建置

財團法人農業工程研究中心/劉日順、譚智宏

一、前言

為維護農民用水權益及提升水資源永續利 用效率,臺灣桃園農田水利會因應行政院推動 之「前瞻基礎建設-數位建設」-「建構民生 公共物聯網計畫」,其中於水資源運用方面由 行政院農業委員會成立「精進灌溉節水管理建 置計書 _ , 針對臺灣近年工商發達及人口增加 使得用水需求日盛,在水資源開發不易及農業 用水需索之壓力下,以提高水資源有效利用為 目標,而針對目前轄管灌溉貯水池管理運用操 作,為掌握即時水量水情以利研擬因應對策, 並綜觀近年網路通訊及雲端網技術成熟發達, 與財團法人農業工程研究中心之自動測報與物 聯網工作團隊共同設計桃園貯水池水文監測與 動態分析管理系統。

本計畫針對觀音工作站、新屋工作站貯 水池,經由現場勘查及調查工作後提出整體 規劃,調查監測站設置之周邊環境,確認感 測器物理量範圍與精度等級需求並且確認感 測器構造與測量現場安裝位置周邊尺寸,評 估感測器之壽命,思考感測器之感測與安裝

方式對目前的供水與渠道維護的影響性,網 路、通訊及電信之調查及分析與監測站最終 設置檢討等。

二、監測站設備規劃

配合經濟部水利署「水資源物聯網感測 基礎雲端作業平臺建置計畫」,於現地監測 站之規劃,配合物聯網新技術之整合與開 發,達到監測與傳輸原件之微型化、無線 化、模組化及耐候性(具防水、撞擊等), 以達相關監測與營管數據即時傳輸與雲端 化,建立整合資料庫、分析模組、決策系 統及互動式資訊平台,相關架構示意如圖1 所示。

電力配置及設計原則由於貯水池取得市 電之建置成本高,因此各監測站之電力來源 將規劃以太陽能為主,配合高容量鋰鏄電 池,以達到電力備援。本案根據現場狀況, 規劃太陽能板輸出功率、鋰鐵電池容量以及 整體系統耗電量進行計算及設計。有關通訊 部分以NB-IoT之通訊架構為主、4G通訊為輔

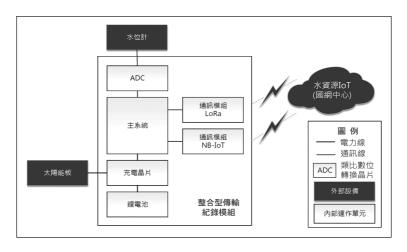


圖 1 現地監測系統整合系統架構示意圖

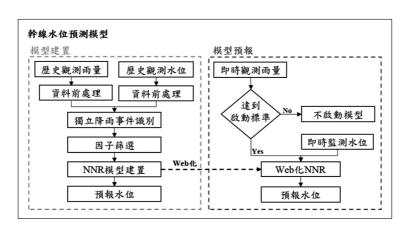


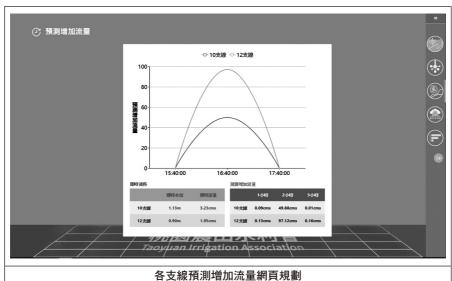
圖 2 幹線水位預測模型流程圖

之雙通道通訊系統,採取雙備援設計。

三、幹支線水位預測模型建置

透過Microsoft Azure雲端運算平台服務的 Machine Learning Studio建構預測水位模型, 使用回歸類神經網路(Neural Network Regression, NNR)建構水位預測模型,建置幹 線水位預測模型的流程圖,如圖2所示。建 構模型的流程分為模型建置和模型預報,模 型建置是以歷史觀測雨量和水位經過資料前 處理、獨立降雨事件識別、因子篩選和參數 率定,建置出一個準確且穩定的預報模型, 建置完模型後,即可模型預報。模型預報 中,接收到即時觀測雨量後,判斷是否達到 啟動標準,達到啟動標準,即可與即時監測 水位一起傳入以建置好的Web化NNR模型, 預報未來1至3小時的水位。

圖形化展示貯水池水量規劃


圖 3 貯水池水量規劃示意圖

四、水文監測動態分析管理平台系統架構 及內部功能介紹

平台首頁可選擇登入身分為訪客或是水 利會人員,將依照權限不同而可杳看不同頁 面或編輯相關參數。水量示意圖將依照水 量百分比進行顏色變化:60%以上則顯示藍 色;介於60%至30%之間則顯示黃色;低於 30%顯示紅色。點選各貯水池後則會直接彈 跳出該貯水池的前6小時水位紀錄及蓄水量等 相關資料,如圖3所示。

透過模型所計算出之支線預測增加流量 採用折線圖的方式進行展示,並於折線圖下 方提供表格供使用者查看各支線之即時水 位、流量及未來1至3小時的預測增加流量數 值。貯水池配水調控建議頁面,將該模型將 分別依照各支線建議貯水池之調配水量,並

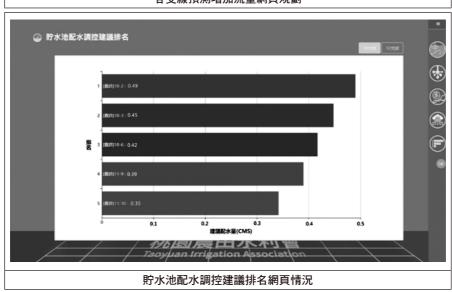
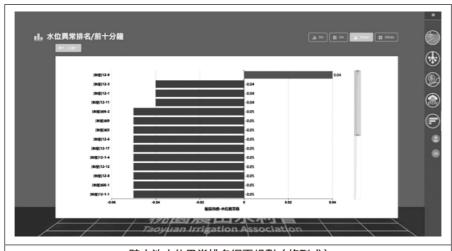


圖 4 預測增加流量及配水調控建議排名示意圖


採用橫條圖的方式進行展示,以提供給工作 站調配水量參考,相關示意圖如圖4所示。

水位異常排名頁面將依模式計算出之水 位異常數值進行排序,將風險指標最高者排 於最上方,且風險指標超標者(數值大於0為

超標)標示為紅色,並可選取條列式顯示或 表格式顯示,如圖5所示。

五、現場建置情形

摘錄給水箱涵式貯水池及給水塔式貯水

貯水池水位異常排名網頁規劃(條列式)

圖 5 貯水池水位異常排名網頁規劃示意圖

池現場施工各1組分別說明。

(一) 觀音 11-5 池

所屬給水箱涵式,其上方有格柵進行防 盗保護設備免於被破壞,內部採取的是雷達 式水位計,其水尺及水位標號皆在最高水位

上50公分以內,相關照片如圖6所示。

(二)新屋 12-1-4池

所屬給水塔式,其水位計支架由給水塔 正前方伸出直接偵測水位,太陽能板、傳訊 紀錄器、水位計皆鎖於立桿上,其水尺安裝

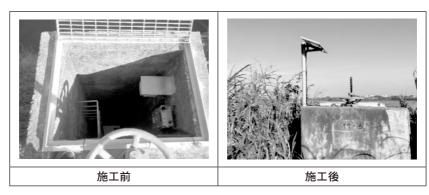


圖 6 11-5 施工照片

圖 7 12-1-4 施工照片

於給水塔之右側,相關照片如圖7所示。

六、結語

本計畫共建置共61口貯水池監測站,其 中共包含33口貯水池屬於箱涵式監測站、28 口貯水池屬於給水塔式監測站。在61處之貯 水池,使用物聯網資通訊技術收集水位資料 後,傳送至水利署水資源物聯網,並使用水 資源物聯網與Azure的運算資源,進行相關 水文模擬演算,以產出調控貯水池策略、防 災應變、貯水池管理建議等結果,並建置相 關網頁,讓管理人員可以在行動裝置、桌上 型電腦,以及桃園水利會本會、工作站之展 示系統上,觀看相關產出之結果。未來配合 即時監測雨量和水位,若達到啟動標準,即 可啟動模式預報未來水位,本團隊重新率定 過所得之迴歸式,可提供決策調配貯水池貯 水量。

桃園灌溉埤塘為水資源有效利用之重要部 分,如能精準掌握埤塘水量,可對未來預報、 調度提供可靠依據。本計畫透過水位感測、 埤塘水位-容量率定及物聯網技術,將埤塘水 位及可用水量即時提供管理單位有效調度,為 建構民生公共物聯網計畫重要一環。